DEVEI.OPMENTS
i
srAnsncs

b - voan',

EDITED By

| I’ARUCHURI R. KRISHNAIAH |



Developments in Statistics

Edited by PARUCHURI R. KRISHNAIAH

DEPARTMENT OF MATHEMATICS AND STATISTICS
UNIVERSITY OF PITTSBURGH
PITTSBURGH. PENNSYLVANIA

Volume 1

ACADEMIC PRESS New York San Francisco London 1978

A Subsidiary of Harcourt Brace Jovanovich, Publishers



CoPYRIGHT © 1978, BY ACADEMIC PRESS, INC.

ALL RIGHTS RESERVED,

NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR
TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC
OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY
INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT
PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC.
111 Fifth Avenue, New York, New York 10003

United Kingdom Edition published by

ACADEMIC PRESS, INC. (LONDON) LTD.
24/28 Oval Road, London NW1 7DX

LiBRARY OF CONGRESS CATALOG CARD NUMBER: 77-11215

ISBN 0-12-426601-0

PRINTED IN THE UNITED STATES OF AMERICA



List of Contributors

Numbers in parentheses indicate the pages on which the authors’ contributions begin.

A. V. BALAKRISHNAN (1), System Science Department, University of
California at Los Angeles, Los Angeles, California

DAVID R. BRILLINGER (33), Department of Statistics, University of
California at Berkeley, Berkeley, California and Department of
Mathematics, University of Auckland, Auckland, New Zealand

P. R. KRISHNAIAH (135), Department of Mathematics and Statistics,
University of Pittsburgh, Pittsburgh, Pennsylvania 15260

M. M. RAO (171), Department of Mathematics, University of California
at Riverside, Riverside, California

PRANAB KUMAR SEN (227), Department of Biostatistics, School of
Public Health, University of North Carolina, Chapel Hill, North
Carolina 27514

J. N. SRIVASTAVA (267), Department of Statistics, Colorado State
University, Fort Collins, Colorado 80523

X



Preface

The series ** Developments in Statistics”’ has been created to provide a
central medium for the publication of long and important papers in various
branches of statistics. The papers may be (i) expository papers, (ii) research
papers, or (iii) papers that are partially expository in nature. The volumes in
the series will appear at irregular intervals. The papers in these volumes
are, in general, too long to be published in journals but too short to be
published as separate monographs. The series will cover both theory and
applications of statistics. The first volume consists of invited papers written
by outstanding workers in the field. These papers give authoritative reviews
of the present state of the art on various topics, including new material
in many cases, in the general areas of stochastic control theory, point
processes, multivariate distribution theory, time series, nonparametric
methods, and factorial designs.

I wish to thank the Department of Mathematics and Statistics at the
University of Pittsburgh and the Department of Statistics at Carnegie-
Mellon University for providing the facilities to edit this volume. I also wish
to thank Academic Press for its excellent cooperation.
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1. INTRODUCTION

The estimation problem in essence is the following. We have an observed
process y(t) (n x 1 matrix function) which has the form

y(t)=S0,t)+ N(t), O0<i<T (L1)

where 0 denotes a vector of unknown parameters which we want to estimate,
S(6, t) being a stochastic process (signal) which is completely specified once
9 is specified (e.g., by means of a stochastic differential system) and N(t)is a
stochastic process which models the errors (that remain even after all

+ Research was supported in part by Grant No. 73-2492, Applied Mathematics Division,
AFOSR, USAF.
1



2 A. V. Balakrishnan

systematic errors, such as bias and calibration errors, have been accounted
for). There is much evidence to suggest that the noise process may be well
modeled as Gaussian, and independent of the signal process. This is a basic
assumption throughout this chapter.

Under the title of “system identification ™ there is a large engineering
literature dealing with such problems. This is well documented in the
proceedings of three symposia [1] devoted exclusively thereto. In the bulk of
this literature, the process S(6, t) is taken to be deterministic, in which case
the estimation is largely treated as a least squares problem of minimizing

I 1500 - 560,00 a

over a predetermined admissible set of parameters . Where the stochastic
signal case is considered, it is reduced to the time-discrete version of (1.1):

Vo = Sn(H) + N, (12)

for the reason that the continuous time is mathematically too difficult to
handle, and anyhow, in digital computer processing (as is the rule), it is so
discretized in the analog-to-digital (A-D) conversion process. This is indeed
true; but the authors invariably proceed to make the assumption that the
noise samples {N,} are mutually independent. But this requires that the
sampling rate (in the periodic sampling of the data) be not more than twice
the postulated bandwidth of the noise, itself actually unknown. Indeed in
most practical cases the sampling rate is far higher than twice the band-
width. To meet this objection, one may then allow the {N,} to be correlated.
But then the correlation function must be known, and anyone with experi-
ence in handling real data can easily appreciate that it is unrealistic to
require that much knowledge of the noise process, even if the complication
in the theory can be borne.

We maintain, in any event, that it is much better to work with the
time-continuous model (1.1), allowing as high a sampling rate in the proces-
sing as the A-D converter is designed for. But in the time-continuous model
we are faced with another problem. The basic tool in estimation is the
likelihood functional (for fixed parameters) which is based on the Radon-
Nikodym derivative of the probability measure induced by the process by
y(+) to that induced by the noise process N(t). But this derivative is too
difficult to calculate even when the precise spectrum of N( - ) is known, which
it is not. What we can assert for sure is that the bandwidth of noise N(t) is
much larger than that of the process S(6, t), which is essential in order that
the measuring instrument does not distort the signal. At this point it was
customary in the earlier engineering literature to introduce white noise in a
formal way as a stationary stochastic process with constant spectral density
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to represent the large bandwidth nature of N(t). With the advances in the
theory of diffusion processes using the Ito integral, it became fashionable to
use a Wiener process model as being more rigorous [2]. Thus we replace (1.1)
by
i
Y(t)=| S@.0)ds+ W() (1.3)
Jo
where W(t) is a Wiener process. We can then exploit the well-developed
machinery of martingales and Ito integrals. In fact the likelihood function
can then be expressed as (see Liptser and Shiryayev [2])

exp| =4 [ 180, i~ 2 [ (50,1 v (14)

where S(0, t) is the best mean square estimate of S(6, t) given the g-algebra
generated by Y(s), s < t. This formula can be justly considered as one of the
triumphs of the Ito theory, the key to the success being the appearance of the
Ito integral in the second form of (1.4). This integral is defined on the basis
that Y(r) is of unbounded variation with probability 1. Of course no physical
instrument can produce such a waveform. To calculate it, given the actual
observation (1.1), we can “retrace” our steps back from (1.3) and use y(t) dt
in place of dY(t). But this is totally incorrect, unless S(6, t) is deterministic,
and any minimization procedure based on it leads to erroneous results. This
point is not appreciated by authors using (1.3) as more rigorous, perhaps
because they have not had occasion actually to calculate anything based on
real data. In any data generated by digital computer simulation, which must
perforce employ the discrete version (1.2), this point can be completely
masked and hence never appreciated.

Faced with this difficulty we have to examine more precisely the model
again, to see a physically more meaningful way of exploiting the fact that the
noise bandwidth is large compared to the signal bandwidth. What is needed
is the asymptotic form of the likelihood functional as the bandwidth expands
to infinity in an arbitrary manner.

Such a theory has been developed by the author using a precise notion of
white noise. This is explained in Section 2. Based on this theory we derive a
likelihood functional in Section 3. It turns out that formula (1.4) is replaced
by

T T

exp:—%.[o 156, t)|{2dt—2.[0 S(0, t)y(t) dt

T R
+ [ (50,077 - 150,01 a (L5)
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where the caret denotes conditional expectation given the data up to time ¢.
Note that a third term appears, which can also be expressed as

[ 1560, S 01

and in the case in which S(6, t) is Gaussian, this reduces to
T

| Ellse. 0~ S )7

being thus the integral of the mean square error in estimation of the signal
S(6, t) from the observation up to time t. When the signal process can be
described in terms of stochastic differential equations, whether finite or
infinite dimensional, advantage can be taken of the fact that the mean square
error can be evaluated by solving a Riccati equation. Section 4 is devoted to
this specialization. Section 5 deals with the application to the problem of
stability and control derivatives from flight test data taking turbulence into
account. The algorithms used and results obtained on actual flight data are
included.

2. WHITE NOISE: BASIC NOTIONS
Let H denote a real separable Hilbert space and let
W=L0,T;H, 0<T<w

denote the real Hilbert space of H-valued weakly measurable functions u(-)
such that

j: [u(z), u(t)] dt < oo

with the inner product defined by

[, v] = jOT [u(e), v(t)] dt

Let ug denote the Gaussian measure on W (on the cylinder sets with finite-
dimensional Borel basis) with characteristic function

Colh)=exp(—3[h, h]), heW

Elements of W under this (finitely additive) measure will be white noise
sample functions, denoted by . This terminology appears to have the sanc-
tion of usage; see Skorokhod [3] for example. It is essential for us that W is
an L,-space over a finite interval.



Parameter Estimation in Stochastic Differential Systems 5

Any function f(-) defined on W into another Hilbert space H, such that
the inverse images of Borel sets in H, are cylinder sets with base in a
finite-dimensional subspace will be called a tame function (see Gross [4]).
As is readily seen, the class of tame functions is a linear class. Since the
inverse image of the whole space H, must be cylindrical, it is clear that any
tame function has the form f (Pw) where P is a finite-dimensional projection.

To introduce the notion of a random variable let us first confine ourselves
to the case in which H, is finite dimensional: H, = R* say. We introduce a
metric into the linear space of tame functions by

lr=all= |, e

and then complete the space, the completion yielding a Frechet space. Every
element of the completed space is called a random variable and if { denotes
such an element and f,(w) a corresponding Cauchy sequence in probability,
then we define the corresponding distribution function or probability meas-
ure on R" to be that induced by the characteristic function

Cylh) - lim E(exp{i[fu(), h]}) (20)

The latter limit exists (uniformly on bounded sets of R" = H,).

In the case in which H, is no longer finite dimensional, we shall still
identify Cauchy sequences in probability of tame functions as weak random
variables. The limit in (2.0) still holds uniformly on bounded sets in H,, but
the limit may in general only define a weak distribution on H,. We recall in
this connection the Sazonov theorem [5] that the limit is the characteristic
function of a probability measure if and only if it is continuous in the
trace-norm topology (S-topology, see later). This is automatically the case if
the sequence is Cauchy in the mean square sense, and we shall then drop the
qualification weak.

Let f(w) be any Borel measurable function mapping W into H,. Then
f(Pw) is tame for every finite-dimensional projection operator P. Let {P,}
denote a sequence of finite-dimensional projections converging strongly to
the identity; the sequence may be assumed to be monotone. If the sequence
f(P,w)is Cauchy in probability, then we may associate a (weak, in general)
random variable with f(-). Let us denote it by f~ (a notation used by
Gross). This limit of course can depend on the particular projection se-
quence chosen. Of primary interest to us are those function f(-) for which
{f(P,w)} is Cauchy in probability for every such sequence of finite-
dimensional projections, and moreover such that all such Cauchy sequences
are equivalent so that the limit random variable f ~ is unique. In that case we
say that f(w) is a (weak) random variable. We shall use the term random
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variable if the corresponding measure is countably additive; with mean
square convergence, this will be automatic.
The simplest function one can consider is perhaps the linear function

f(w)= Lo

where L is a linear bounded transformation mapping W into H,, where we
now allow H, to be infinite dimensional. Then it is easy to see that if L is
Hilbert-Schmidt, then {LP,, } is Cauchy in the mean square sense, and Lo
is a random variable. Conversely, L must be H-S if Lw is to be a random
variable.

What is the class of functions which are random variables? To answer
this question, at least in part, let us introduce the S-topology on W: This is
the (locally convex) topology induced by seminorms of the form

plw) = [So, ]2 1)

where here (and hereinafter) S denotes a self-adjoint, nonnegative definite
trace-class operator on W into W. For the case in which H, = R*, Gross [4]
has given a sufficient condition: f(-) is a random variable if it is uniformly
continuous in the S-topology. Uniform continuity means that given & > 0,
we can find p(-) such that

[f(x)-f) <e forall x,y suchthat p(x —y)<1

Unfortunately Gross does not seem to discuss nontrivial examples of func-
tions satisfying this condition. Here we shall give a sufficient condition for a
class of random variables with finite second moment.

Theorem 2.1. Let p,(w) denote a homogeneous polynomial of degree n
mapping W into H,. Suppose it is continuous at the origin in the S-topology.
Let P denote any finite-dimensional projection. Then

sup E(|[pa(Pw)|?) < o0 (22)

where the supremum is taken over the class of all finite-dimensional projec-
tions. Conversely, if (2.2) holds, then p,(- ) is continuous at the origin in the
S-topology.

Proof. We begin with a simple but useful lemma.

Lemma 2.1. Suppose p,(-) is continuous in the S-topology at the origin.
Then there exists a seminorm in the S-topology:

pw) = [Sw, ]2 (23)
such that

IPale)] < Mp(w) (24)
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where M is a constant. Conversely, if (2.4) holds, then p,(w) is continuous in
the S-topology at the origin.

Proof. Continuity in the S-topology at zero implies the following:
Given ¢ > 0 we can find a seminorm of the form (2.3) such that

|pu(w)| <&  forall @ suchthat p(w)<3 (2.5)

Hence for any o for which p(w) # 0, we have that

o)l < () stor.  plo)#0

If p(w) = 0, then for any positive number k,

<eé

plkew) =0
and hence from (2.5)
|pa(@)]| < &|k*  forall k>0

and hence
pa(@)=0
Therefore (2.4) holds. The converse is obvious.

Proof of Theorem. Corresponding to a finite-dimensional projection P,
we can find an orthonormal basis {¢;} such that P is the projection operator
corresponding to the space spanned by ¢, i=1,2,..., m. Let

Pol@) = ky(o, ..., w)

k,(---) being the symmetric n-linear form, corresponding to p,(-). Then
p(Po)=3Y - Y a5 Cip-s b, (2.6)
=1 i,=1
where
ail, e in & kn((pip sevy d)i,,)a Ci = [¢i5 CD]

{¢;} is a sequence of independent zero-mean unit variance Gaussians and
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(2.6) defines a tame function. Moreover we can readily calculate [by express-
ing (2.6) in terms of Hermite polynomials for instance] that

[n/2] n! 2
E(|p(Po)|*) = ¥, (m)

v=0
m m m m 2
x . Z Z . o Z LTI PR N S PSR (27)
izve1=1 ip=1 i1=1 iv=1
But from Lemma 2.1, we have that
IPa(P)||* < [Smo>, @] (2.8)
where S,, = PSP, and is of course trace-class and finite dimensional. Hence
E[||pu(Po)|*] < E([Sn, ©]") (2.9)
Let Y, k=1, ..., v, be the orthonormalized eigenvectors of S,, with corre-

sponding nonzero eigenvalues 4,. Then

[Smw’ w] = Z j-i[‘/’b CU]2
and we have !
E([S,o, o]') =f(tr S, tr S,,%, ..., tr S,")

where f(+ ) is a fixed continuous function. Of course tr S,/ is monotone in m
for each j and converges to tr S/. Hence it follows that

E[|p(Po)|?] < o0

for all finite-dimensional projections.
To prove the converse, suppose (2.2) holds. Then (2.7) holds for every m,
and taking v = O therein, we obtain that

i ;i ||kn(¢i1’ Tt ¢in)

for every orthonormal sequence {¢;}. Hence p,(-) is Hilbert-Schmidt. Of
course

2<w (2.10)

[Pa(@)]* < M| (2.11)
Define S now by

[Sw, @] = ([lpa()]*)""

Then S is Hilbert-Schmidt by (2.10). For any finite-dimensional projection
P,

E[SPw, Pw] = E[PSPw, w] = E((||p.(Pw)|?)"")



