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vi INTRODUCTION

chapter covers some selected topics in the theory of infinite dimensional
manifolds.

At the end of each chapter, several problems are worked out. Most of
them show how the concepts and the theorems introduced in the text can
be used in physics. They should be of interest both to physicists and
mathematicians. A sentence like “The Lagrangian is a function defined on
the tangent bundle of the configuration space” helps explain to the
physicist what a tangent bundle is and tells a mathematician what a
Lagrangian is. A sentence like “The strain tensor is the Lie derivative of
the metric with respect to the deformation” helps a physicist to under-
stand the concept of Lie derivatives and defines the strain tensor to a
mathematician. To both, they bring an added pleasure.

The pleasure of physical mathematics is well described by Hilbert:
learning that some genetic laws of the fruit fly had been derived by the
application of a certain set of axioms he exclaimed “So simple and precise
and at the same time so miraculous that no daring fantasy could have

imagined it™”.

PREFACE TO THE SECOND EDITION

We are happy that the success of the first edition gave us a chance to
prepare a revised edition. We have made numerous changes and added
exercises with their solutions to ease the study of several chapters. The
major addition is a chapter “Connections on principal fibre bundles”
which includes sections on holonomy, characteristic classes, invariant
curvature integrals and problems on the geometry of gauge fields, mono-
poles, instantons, spin structure and spin connections. Other additions
include a section on the second fundamental form, a section on almost
complex and kahlerian manifolds, and a problem on the method of stationary
phase. More than 150 entries have been added to the index.

Can this book, now polished by usage, serve as a text for an advanced
physical mathematics course? This question raises another question: What is
the function of a text book for graduate studies? In our times of rapidly
expanding knowledge, a teacher looks for a book which will provide a
broader base for future developments than can be covered in one or two
semesters of lectures and a student hopes that his purchase will serve him for
many years. A reference book which can be used as a text is an answer to
their needs. This is what this book is intended to be, and thanks to a
publishing company which keeps it moderately priced, this is what we hope it
will be.

2‘Hilbert” Constance Reid, Springer Verlag, 1970.
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