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Preface

The main topic of this book is optimization problems involving uncertain parameters,
for which stochastic models are available. Although many ways have been proposed to
model uncertain quantities, stochastic models have proved their flexibility and usefulness
in diverse areas of science. This is mainly due to solid mathematical foundations and
theoretical richness of the theory of probability and stochastic processes, and to sound
statistical techniques of using real data.

Optimization problems involving stochastic models occur in almost all areas of science
and engineering, from telecommunication and medicine to finance. This stimulates interest
in rigorous ways of formulating, analyzing, and solving such problems. Due to the presence
of random parameters in the model, the theory combines concepts of the optimization theory,
the theory of probability and statistics, and functional analysis. Moreover, in recent years the
theory and methods of stochastic programming have undergone major advances. All these
factors motivated us to present in an accessible and rigorous form contemporary models and
ideas of stochastic programming. We hope that the book will encourage other researchers
to apply stochastic programming models and to undertake further studies of this fascinating
and rapidly developing area.

We do not try to provide a comprehensive presentation of all aspects of stochastic
programming, but we rather concentrate on theoretical foundations and recent advances in
selected areas. The book is organized into seven chapters. The first chapter addresses mod-
eling issues. The basic concepts, such as recourse actions, chance (probabilistic) constraints,
and the nonanticipativity principle, are introduced in the context of specific models. The
discussion is aimed at providing motivation for the theoretical developments in the book,
rather than practical recommendations.

Chapters 2 and 3 present detailed development of the theory of two-stage and multi-
stage stochastic programming problems. We analyze properties of the models and develop
optimality conditions and duality theory in a rather general setting. Our analysis covers
general distributions of uncertain parameters and provides special results for discrete distri-
butions, which are relevant for numerical methods. Due to specific properties of two- and
multistage stochastic programming problems, we were able to derive many of these results
without resorting to methods of functional analysis.

The basic assumption in the modeling and technical developments is that the proba-
bility distribution of the random data is not influenced by our actions (decisions). In some
applications, this assumption could be unjustified. However, dependence of probability dis-
tribution on decisions typically destroys the convex structure of the optimization problems
considered, and our analysis exploits convexity in a significant way.

xiii



Xiv Preface

Chapter 4 deals with chance (probabilistic) constraints, which appear naturally in
many applications. The chapter presents the current state of the theory, focusing on the
structure of the problems, optimality theory, and duality. We present generalized convexity
of functions and measures, differentiability, and approximations of probability functions.
Much attention is devoted to problems with separable chance constraints and problems
with discrete distributions. We also analyze problems with first order stochastic dominance
constraints, which can be viewed as problems with continuum of probabilistic constraints.
Many of the presented results are relatively new and were not previously available in standard
textbooks.

Chapter 5 is devoted to statistical inference in stochastic programming. The starting
point of the analysis is that the probability distribution of the random data vector is ap-
proximated by an empirical probability measure. Consequently, the “true” (expected value)
optimization problem is replaced by its sample average approximation (SAA). Origins of
this statistical inference are in the classical theory of the maximum likelihood method rou-
tinely used in statistics. Our motivation and applications are somewhat different, because
we aim at solving stochastic programming problems by Monte Carlo sampling techniques.
That is, the sample is generated in the computer and its size is constrained only by the com-
putational resources needed to solve the constructed SAA problem. One of the byproducts
of this theory is the complexity analysis of two-stage and multistage stochastic program-
ming. Already in the case of two-stage stochastic programming, the number of scenarios
(discretization points) grows exponentially with an increase in the number of random pa-
rameters. Furthermore, for multistage problems, the computational complexity also grows
exponentially with the increase of the number of stages.

In Chapter 6 we outline the modern theory of risk averse approaches to stochastic
programming. We focus on the analysis of the models, optimality theory, and duality.
Static and two-stage risk averse models are analyzed in much detail. We also outline a risk
averse approach to multistage problems, using conditional risk mappings and the principle
of “time consistency.”

Chapter 7 contains formulations of technical results used in the other parts of the book.
For some of these less-known results we give proofs, while others refer to the literature.
The subject index can help the reader quickly find a required definition or formulation of a
needed technical result.

Several important aspects of stochastic programming have been left out. We do
not discuss numerical methods for solving stochastic programming problems, except in
section 5.9, where the stochastic approximation method and its relation to complexity esti-
mates are considered. Of course, numerical methods is an important topic which deserves
careful analysis. This, however, is a vast and separate area which should be considered in a
more general framework of modern optimization methods and to a large extent would lead
outside the scope of this book.

We also decided not to include a thorough discussion of stochastic integer program-
ming. The theory and methods of solving stochastic integer programming problems draw
heavily from the theory of general integer programming. Their comprehensive presentation
would entail discussion of many concepts and methods of this vast field, which would have
little connection with the rest of the book.

At the beginning of each chapter, we indicate the authors who were primarily respon-
sible for writing the material, but the book is the creation of all three of us, and we share
equal responsibility for errors and inaccuracies that escaped our attention.
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Chapter 1

Stochastic Programming
Models

Andrzej Ruszczyriski and Alexander Shapiro

1.1 Introduction

Readers familiar with the area of optimization can easily name several classes of optimiza-
tion problems, for which advanced theoretical results exist and efficient numerical methods
have been found. We can mention linear programming, quadratic programming, convex
optimization, and nonlinear optimization. Stochastic programming sounds similar, but no
specific formulation plays the role of the generic stochastic programming problem. The
presence of random quantities in the model under consideration opens the door to a wealth
of different problem settings, reflecting different aspects of the applied problem at hand.
This chapter illustrates the main approaches that can be followed when developing a suitable
stochastic optimization model. For the purpose of presentation, these are very simplified
versions of problems encountered in practice, but we hope that they help us to convey our
main message.

1.2 Inventory
1.2.1 The News Vendor Problem

Suppose that a company has to decide about order quantity x of a certain product to satisfy
demand d. The cost of ordering is ¢ > O per unit. If the demand 4 is larger than x, then
the company makes an additional order for the unit price b > 0. The cost of this is equal to
b(d — x) if d > x and is O otherwise. On the other hand, if d < x, then a holding cost of

1



2 Chapter 1. Stochastic Programming Models

h(x —d) > 0is incurred. The total cost is then equal to'
F(x,d) =cx + bld — x], + hlx —d],. (1.1)

We assume that b > ¢, i.e., the backorder penalty cost is larger than the ordering cost.

The objective is to minimize the total cost F(x, d). Here x is the decision variable
and the demand d is a parameter. Therefore, it the demand is known, the corresponding
optimization problem can be formulated as

Mi(r)l F(x,d). (1.2)

The objective function F(x, d) can be rewritten as
F(x.d):max{(c‘—b)x+bd,(c+h)x—hd}. (1.3)

which is a piecewise linear function with a minimum attained at x = d. That is, if the
demand d is known, then (as expected) the best decision is to order exactly the demand
quantity d.

Consider now the case when the ordering decision should be made before a realization
of the demand becomes known. One possible way to proceed in such a situation is to view
the demand D as a random variable. By capital D, we denote the demand when viewed
as a random variable in order to distinguish it from its particular realization d. We assume,
further, that the probability distribution of D is known. This makes sense in situations
where the ordering procedure repeats itself and the distribution of D can be estimated from
historical data. Then it makes sense to talk about the expected value, denoted E[ F (x, D)],
of the total cost viewed as a function of the order quantity x. Consequently, we can write
the corresponding optimization problem

Min {fx) = E[F(x, D)]}. (1.4)

The above formulation approaches the problem by optimizing (minimizing) the total
cost on average. What would be a possible justification of such approach? If the process
repeats itself, then by the Law of Large Numbers, for a given (fixed) x, the average of
the total cost, over many repetitions, will converge (with probability one) to the expecta-
tion E[F (x, D)], and, indeed, in that case the solution of problem (1.4) will be optimal
on average.

The above problem gives a very simple example of a two-stage problem or a problem
with a recourse action. At the first stage, before a realization of the demand D is known, one
has to make a decision about the ordering quantity x. At the second stage, after a realization
d of demand D becomes known, it may happen that d > x. In that case, the company takes
the recourse action of ordering the required quantity d — x at the higher cost of b > c.

The next question is how to solve the expected value problem (1.4). In the present
case it can be solved in a closed form. Consider the cumulative distribution function (cdf)
H(x) := Pr(D < x) of the random variable D. Note that H(x) = O for all x < 0, because
the demand cannot be negative. The expectation E[ F (x, D)] can be written in the following
form:

E[F(x, D)] =bIE[D]+(C—b)x+(b+h)/ H(z)dz. (1.5)
0

'For a number a € R, |a|, denotes the maximum max{a, 0}.



