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Preface

It is with great pleasure that we present to you this tutorial volume entitled
Validation of Stochastic Systems. It is one of the results of the Dutch-German bi-
lateral cooperation project “Validation of Stochastic Systems” (VOSS), financed
by NWO and DFG (the Dutch and German science foundations, respectively).

In the early days of 2002, the idea emerged to organize a seminar at Schloss
Dagstuhl, not the usual Dagstuhl seminar with primarily invited participants,
but a seminar aimed at young(er) people, and for which the organizers assign
themes to be worked upon and presented on. Following an open call announced
via the Internet in the spring of 2002, we received many applications for partic-
ipation. After a selection procedure, we decided to assign (mostly) teams of two
researchers to work on specific topics, roughly divided into the following four
theme areas: “Modelling of Stochastic Systems,” “Model Checking of Stochastic
Systems,” “Representing Large State Spaces,” and “Deductive Verification of
Stochastic Systems.” These are the titles of the four parts of this volume.

The seminar was held in Schloss Dagstuhl during December 8-11, 2002 as part
of the so-called GI/Research Seminar series. This series of seminars is financially
supported by the Gesellschaft fir Informatik, the German Computer Society. At
that point in time the papers had already undergone a first review round. Each
of the tutorial papers was presented in a one-hour session, and on the basis of
the presentations we decided to bring together a selection of them into a book.
A second review round was performed throughout 2003; at the end of 2003 all
contributions were finished. We are glad that Springer-Verlag was willing to
publish it in their well-established Lecture Notes in Computer Science series, in
particular in the “green cover” Tutorial subseries.

To conclude this preface, we would like to thank NWO and DFG for making
the VOSS bilateral cooperation project possible in the first place. Secondly, we
would like to thank the Gesellschaft fiir Informatik for supporting the partici-
pants of the seminar. We would like to thank the whole team at Schloss Dagstuhl
for their willingness to host us and for their hospitality. We also thank the au-
thors of the tutorial papers as well as the reviewers for their efforts; without
you, there would not have been a workshop! Finally, we would like to thank
José Martinez (of the University of Twente) for his work on the editing of this
volume.

Christel Baier
Boudewijn Haverkort
Holger Hermanns
Joost-Pieter Katoen
Markus Siegle
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Probabilistic Automata: System Types, Parallel
Composition and Comparison

Ana Sokolova! and Erik P. de Vink?

! Department of Mathematics and Computer Science,
TU /e, Eindhoven
a.sokolova@Qtue.nl
2 LIACS, Leiden University

evink@win.tue.nl

Abstract. We survey various notions of probabilistic automata and
probabilistic bisimulation, accumulating in an expressiveness hierarchy of
probabilistic system types. The aim of this paper is twofold: On the one
hand it provides an overview of existing types of probabilistic systems
and, on the other hand, it explains the relationship between these models.
We overview probabilistic systems with discrete probabilities only. The
expressiveness order used to built the hierarchy is defined via the exis-
tence of mappings between the corresponding system types that preserve
and reflect bisimilarity. Additionally, we discuss parallel composition for
the presented types of systems, augmenting the map of probabilistic au-
tomata with closedness under this compositional operator.

Keywords: probabilistic automata (transition systems), probabilistic
bisimulation, preservation and reflection of bisimulation, non-determinism,
parallel composition.

1 Introduction

The notion of a state machine has proved useful in many modelling situations,
amongst others, the area of validation of stochastic systems. In the literature up
to now, a great variety of types of probabilistic automata has been proposed and
many of these have been actually used for verification purposes. In this paper we
discuss a number of probabilistic automata with discrete probability distribu-
tions. For continuous-time probabilistic systems the interested reader is referred
to [11, 33,32, 17,45, 4]. Models of stochastic systems that are not represented by
transition systems can also be found in [22] and [70].

Due to the variety of proposed models it is often the case that results have
to be interpreted from one type of systems to another. Therefore we compare
the considered types of probabilistic automata in terms of their expressiveness.
The comparison is achieved by placing a partial order on the classes of such au-
tomata, where one class is less then another if each automaton in the class can
be translated to an automaton of the other class such that translations both re-
flect and preserve the respective notions of bisimilarity. Hence, bisimulation and

C. Baier et al. (Eds.): Validation of Stochastic Systems, LNCS 2925, pp. 1-43, 2004.
© Springer-Verlag Berlin Heidelberg 2004



2 A. Sokolova and E.P. de Vink

bisimilarity are central notions in this overview. Other comparison criteria are
important as well, e.g. logical properties, logical characterization of bisimulation
[61], complexity of algorithms for deciding bisimulation [9, 13, 31, 80] and so on.
We choose the comparison criterion formulated in terms of strong bisimulation
because of its simplicity and because we work with transition labelled systems,
for which bisimulation semantics arises naturally from the step-by-step behavior.

A major distinction of probabilistic automata is that between fully probabilis-
tic vs. non-deterministic ones. In a fully probabilistic automaton every choice is
governed by a probability distribution (over set of states or states combined with
actions). The probability distribution captures the uncertainty about the next
state. If we abstract away from the actions in a fully probabilistic automaton, we
are left with a discrete time Markov chain. Subsequently, standard techniques can
be applied to analyze the resulting Markov chains. Sometimes, the incomplete
knowledge about the system behavior can not be represented probabilistically.
In these cases we should consider more than one transition possible. We speak in
this case of a non-deterministic probabilistic automaton. Most of the models that
we consider include some form of non-determinism and hence fall in the category
of non-deterministic probabilistic automata. As pointed out by various authors,
e.g. [47,76, 3, 81] non-determinism is essential for modelling scheduling freedom,
implementation freedom, the external environment and incomplete information.
Furthermore, non-determinism is essential for the definition of an asynchronous
parallel composition operator that allows interleaving. Often two kinds of non-
deterministic choices are mentioned in the literature (see for e.g. [81]), external
non-deterministic choices influenced by the environment, specified by having sev-
eral transitions with different labels leaving from the same state, and internal
non-determinism, exhibited by having several transitions with the same label
leaving from a state. We use the term non-determinism for full non-determinism
including both internal and external non-deterministic choices.

We introduce several classes of automata, ranging from the simplest models
to more complex ones. The questions that we will address for each individual
class are:

— the definition of the type of automaton and the respective notion of strong
bisimulation;

— the relation of the model with other models;
— presence and form of non-determinism;

— the notion of a product or parallel composition in the model.

The set-up of the paper is as follows: Section 2 presents the necessary notions
considering probability theory, automata (transition systems), and concurrency
theory, in particular compositional operators. In section 3 we focus on the various
definitions of probabilistic automata in isolation with their corresponding notions
of bisimulation. In section 4 the operators of parallel composition are discussed.
We address the interrelationship between the introduced types of automata in
section 5. Section 6 wraps up with some conclusions.
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2 Basic Ingredients

2.1 Probability Distributions

Let 2 be a set. A function p: 2 — [0,1] is called a discrete probability distribu-
tion, or distribution for short, on §2 if {z € £2| pu(z) > 0} is finite or countably
infinite and ), ., u(xz) = 1. The set {x € 2| u(z) > 0} is called the support
of 4 and is denoted by spt(u). If z € £2, then ul denotes the unique probability
distribution with pl(z) = 1, also known as the Dirac distribution for . When
p is a distribution on {2 we use the notation u[X] for 3 .+ u(x) where X C (2.
By D(£2) we denote the set of all discrete probability distributions on the set
2. If p is a distribution with finite support {s1,...,sn}, We sometimes write
{s1 = u(s1),-..,8n — u(sp)}. With this notation, ul = {z — 1}.

Let pu1 € D(S) and pus € D(T). The product py x pg of p; and pg is a
distribution on S x T defined by (11 x p2)(s,t) = u1(s) - pa(t), for (s,t) € SxT.

If p € D(S x T), we use the notation u[s,T| for u[{s} x T] and u[S,t] for
u[S x {t}]. We adopt from [51] the lifting of a relation between two sets to a
relation between distributions on these sets.

Definition 1. Let R € S x T be a relation between the sets S and T. Let
n € D(S) and u' € D(T) be distributions. Define p =g u' if and only if there
exists a distribution v € D(S x T) such that

1. v[s,T) = pu(s) for any s € S

2. v[S,t] = p'(t) foranyt e T

3. v(s,t) #0 if and only if (s,t) € R.

The lifting of a relation R preserves the characteristic properties of preorders

and equivalences (cf. [52]). For the special case of an equivalence relation there
is a simpler way to define the lifting (cf. [52, 81, 9]).

Proposition 1. Let R be an equivalence relation on the set S and let p,p’ €
D(S). Then u =g p' if and only if u[C] = p'[C] for all equivalence classes
CeS/R. d

Lifting of an equivalence relation on a set S to a relation =g 4 on the set
D(A x S), for a fixed set A, will also be needed.

Definition 2. Let R be an equivalence relation on a set S, A a set, and let
u, 1 € D(A x S). Define

pu=gap < VCeS/RVac A: pla,C|=p[a,C)
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2.2  Non-probabilistic Automata, Markov Chains, Bisimilarity

Throughout the paper we will use the terms automaton, transition system or
just system as synonyms.

Non-probabilistic Automata
Definition 3. A transition system, TS for short, is a pair (S, ) where

1. S is a set of states
2. a: S — P(S) is a transition function, where P denotes the powerset of S.

If (S,a) is a transition system such that s,s’ € S and s’ € a(s) we write
s — s’ and call it a transition.

Often in the literature a TS is given as a triple, including besides the set of
states and the transition function also a subset of initial states, or a single initial
state. In this paper we will consider no initial states and therefore they are not
present in the definition. Instead of a transition function one could equivalently
consider a transition relation as a subset of S x S. Our choice here is to always
present the transitions via a transition function.

A way of representing a TS is via its transition diagram. For example, the Sys-
tem (S, a) where S = {s1, 52, 83,54} and a(s1) = {s2, 53}, (s2) = {84}, a(s3) =
a(s4) = 0, is represented as follows:

LN

052

l

034

The states s3 and s4 are terminating states, with no outgoing transitions.

It is often of use to model the phenomenon that a change of state in a system
happens as a result of executing an action. Therefore, labelled transition systems
evolve from transition systems. There are two ways to incorporate labels in a
TS: by labelling the states (usually with some values of variables, or a set of
propositions true in a state), or by explicitly labelling the transitions with actions
or action names. In this paper we focus on transition labelled systems.

Definition 4. A labelled transition system (LTS) (or a non-deterministic au-
tomaton) is a triple (S, A, a) where

1. S is a set of states
2. A is a set of actions
3. a: 8 — P(AxS) is a transition function.

When (S, A, ) is a LTS, then the transition function o can equivalently be
considered as a function from S to P(S)4, the collection of functions from A
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to P(S). As in the case of TSs, for any state s € S of a LTS, every element
(a,s') € a(s) determines a transition which is denoted by s % s'.

The class of non-deterministic automata (LTSs) is denoted by NA. Deter-
ministic automata, given by the next definition, form a subclass of NA.

Definition 5. A deterministic automaton is a triple (S, A, ) where

1. S is a set of states
2. A is a set of actions
3. a: S — (S+1)4 is a transition function.

Notation 1 We denote by + the disjoint union of two sets. The set 1 is a
singleton set containing the special element %, i.e. 1 = {x}. We assume that
x ¢ S. The notation (S + 1)* stands for the collection of all functions from A
to S+ 1.

The special set 1 and the disjoint union construction allow us to write par-
tial functions as functions. Hence, in a deterministic automaton each state s is
assigned a partial function a(s): A — S+ 1 from the set of actions to the set of
states, meaning that whenever a(s)(a) = s’ for some s’ € 5, i.e. a(s) # *, then
there is a transition s — s’ enabled in S. We denote the class of all deterministic
automata by DA.

We note that the class of automata DA exhibits external non-determinism,
while in N A there is full non-determinism.

. °
N g
a
° ° ° ° °
external non-determinism full non-determinism

Markov Chains. The simplest class of fully probabilistic automata is the class
of discrete time Markov chains. The theory of Markov chains is rich and huge
(see, e.g., [57,48,16,43]) and we only provide a simple definition of a discrete
time Markov chain here.

Definition 6. A Markov chain is a pair (S, o) where

1. S is a set of states
2. a: S — D(S) is a transition function.

Markov chains evolve from transition systems, when probability is added to
each transition such that for any state the sum of the probabilities of all outgoing
transitions equals 1. The class of all Markov chains is denoted by MC. If s € S
and a(s) = p with p(s’) = p> 0 then the Markov chain (S, a) is said to go from
a state s with probability p to a state s’. Notation: s ~ u and s gl

Ezxample 1.
S = {s0, 51,52}
/; \\ a(s0) = {s0 = 0,81 — 3,52 — 3}
os1) = pg,

31 <\/‘\/\M .52

a(s2) = s,
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Bisimulation and Bisimilarity. Different semantics or notions of behavior
can be given to labelled transition systems. We work with the bisimulation se-
mantics (Milner [65, 66]) stating that two states in a system represented by LTSs
are equivalent whenever there exists a bisimulation relation that relates them.
A bisimulation relation compares the one-step behavior of two states and has a
nice extension to the probabilistic case (as explored in [61]). In [54] probabilistic
extensions of a number of other well known process equivalences have been stud-
ied like probability trace, completed trace, failure and ready equivalence. Other
probabilistic process equivalences are probabilistic simulation and bisimulation
by Segala and Lynch [78,76], Yi and Larsen’s testing equivalence [88], and CSP
equivalences of Morgan et al. [67], Lowe [59] and Seidel [77]. An overview of
several probabilistic process equivalences can be found in [58].

Definition 7. Let (S, A, ) and (T, A, o) be two LTSs. A relation R C S x T
is a bisimulation relation if for all (s,t) € R and all a € A the following holds

if s 5 s’ then there exists t' € T such thatt % t' and (s',t'y € R, and
if t 5 t' then there exists s' € S such that s % s' and (s',t") € R.

Let s € S andt € T. The states s and t are called bisimilar, denoted bys=~t
if there exists a bisimulation relation R with (s,t) € R.

Ezample 2. For the following LT'Ss we have, for example, sq ~ to since R =
{(s0,t0), (s0,t2), (s1,t1), (s1,t3)} is a bisimulation.

a
L ) [ ] b ]
S0 to —> %,
lb C\la

o, O, ——> 04,

Remark 1. Instead of comparing states in two systems (S,4,0a) and (T, A, B) we
can always consider one joined system (S + T, A,~) with v(s) = a(s) for s € S
and 7(t) = B(t) for t € T. Therefore bisimulation can be defined as a relation on
the set of states of a system. Furthermore, if RC Sx Sis a bisimulation, then it
is reflexive and symmetric, and the transitive closure of R is also a bisimulation.
Hence bisimilarity = is not affected by the choice of defining bisimulation as an
equivalence.

Definition 8. An equivalence relation R on a set of states S of a LTS is an
equivalence bisimulation if for all (s,t) € R and alla € A

ifsS s thenI' €8S: t 5S¢, (s ¢) € R

The states s and t are called bisimilar, denoted by s =, t if there exists an
equivalence bisimulation R with (s,t) € R.
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By Remark 1, the following proposition holds.

Proposition 2. Let (S, A,a) and (T, A,B) be two LTSs, and let s€ S, t € T
Then s =~ t if and only if s =, t.
O

Bisimulation on DA is defined exactly the same as for NA i.e. with Defini-
tion 8.

The standard notion of probabilistic bisimulation is the one introduced by
Larsen and Skou [61] originally formulated for reactive systems (see next sub-
section). An early reference to probabilistic bisimulation can be found in [23].
In the case of Markov chains, bisimulation corresponds to ordinary lumpabil-
ity of Markov chains [57,44, 27]. In [86,85] it is shown that the concrete notion
of bismulation for Markov-chains coincides with a general coalgebraic notion of
bisimulation [68,53, 74, 64].

The idea behind probabilistic bisimulation is as follows. Since bisimilar states
are considered “the same”, it does not matter which element within a bisimu-
lation class is reached. Hence, a bisimulation relation should compare the prob-
ability to reach an equivalence class and not the probability to reach a single
state. In order to define bisimulation for Markov chains the lifting of a relation
on a state S to a relation on D(S), as defined in Definition 1 and explained with
Proposition 1, is used. Note that the comments of Remark 1 are in place here
as well.

Definition 9. An equivalence relation R on a set of states S of a Markov chain
(S, @) is a bisimulation if and only if for all (s,t) € R

if s ~» u then there is a transition t ~ pu' with u =g y'.

The states s and t are called bisimilar, denoted by s = t, if there exists a bisim-
ulation R with (s,t) € R.

Definition 9 will be used, with some variations, for defining bisimulation
relations for all types of probabilistic automata that we consider in this overview.
However, note that in the case of Markov chains any two states of any two
Markov chains are bisimilar, according to the given definition, since V=S5 x §
is a bisimulation on the state set of any Markov chain (S, ). Namely, let (S, ) be
a Markov chain and s,t € S, such that a(s) = u, a(t) =y, ie., s~ p,t ~ p'.
Then for the only equivalence class of V, S, we have u[S] = 1 = p/[9] ie.
1 =g 1/ which makes s =~ t. This phenomenon can be explained with the fact
that bisimilarity compares the observable behavior of two states in a system
and the Markov chains are very simple systems in which there is not much to
observe. Therefore the need comes to enrich Markov chains with actions or at
least termination.
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Notation. In Section 3 we will introduce ten other types of probabilistic au-
tomata, with corresponding notions of bisimulation. In order to avoid repetition
we collect the following.

— A type of automata will always be a triple (S, A, @) where S is a set of states,
A is a set of actions and « is a transition function. The difference between
the system types is expressed with the difference in the codomains of the
corresponding transition functions.

— A bisimulation relation will always be defined as an equivalence on the set
of states of a system. Depending on the type of systems the “transfer condi-
tions” in the definition of bisimulation vary.

— For a particular type of system, the bisimilarity relation, denoted by =~ is
defined by: s = ¢ if and only if there exists a bisimulation R that relates s
and ¢, i.e. (s,t) € R. Although we use the same notation ~ for bisimilarity
in different types of systems, it should be clear that for each type of systems,
~ is a different relation.

2.3 Parallel Composition of LTSs and MCs

Compositional operators serve the need of modular specification and verification
of systems. They arise from process calculi, such as CCS ([66]), CSP ([47]) and
ACP ([19]), where process terms (models of processes) are built from atomic pro-
cess terms with the use of compositional operators. Usually a model of a process
calculi is a suitable class of transition systems. Therefore it is often the case that
process terms are identified with their corresponding transition systems, and the
compositional operators of the process calculus can be considered as operators
for combining transition systems. In this overview we focus on the parallel com-
position operator. The definition of parallel composition varies a lot throughout
different process calculi. In this section we consider the non-probabilistic case
(LTSs) in order to explain variants of different parallel compositions, and the
parallel composition of Markov chains in order to present the basics of proba-
bilistic parallel composition.

Labelled Transition Systems. A major distinction between different paral-
lel composition operators is whether they are synchronous, where the compo-
nents are forced to synchronize whenever they can, or asynchronous where the
components can either synchronize or act independently. Furthermore, differ-
ent approaches for synchronization exist. The result of the parallel composi-
tion of two automata A; = (S1, 4, ) and Ay = (52,4, a,) is an automaton
Aill A2 = (S1 x S3, A, ) where the definition of o varies. Instead of a pair
(s,t) € S1x .Sy we will write s||¢ for a state in the composed automaton. Through-
out this subsection we will use as running example, the parallel composition of
the following two automata.



