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Preface

Linear algebra is an essential tool of the pure mathematician on the one
hand and of the physicist and the theoretical economist on the other. This
wide applicability of the subject makes its early mastery by the science
student imperative. Like most branches of algebra, linear algebra also offers
a convenient language for conveying complex ideas in a simple form. In
linear algebra, it is the language of vectors, linear transformations, and
matrices.

This book is intended for use in an introductory course on linear algebra.
Principally, it is a study of finite-dimensional vector spaces and their asso-
ciated algebras of linear transformations and matrices. No attempt has been
made to show any applications of linear algebra other than to geometry. At
every stage in the development of the subject matter, the direct, intuitive
approach has been used whenever possible. We believe this approach will
give the student the necessary background to appreciate in a later course a
more sophisticated development using modules and their duals. The direct
approach also has the advantage of being constructive and in this way allows
a wide use of examples to illustrate new results and their proofs.

The first chapter has a two-fold purpose; to discuss the theory of finite-
dimensional vector spaces and to develop examples of such spaces. Matrices
are introduced in Chapter Two as arrays of numbers associated with systems
of linear equations. Then, in Chapter Three, matrices are used to represent
linear transformations of vector spaces. Determinants are developed in Chap-
ter Four to allow us to compute inverses of matrices and solutions of systems
of linear equations. The minimal polynomial of a linear transformation is
described in Chapter Five and is used to find simple matrix representations
of the transformation. Chapter Six discusses the splitting of a vector space
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into a direct sum of invariant subspaces relative to a linear transformation.
The one-dimensional invariant subspaces yield the characteristic values of
the transformation. The general theory of this splitting is described in Chap-
ter Eight. Isometries and symmetric linear transformations of Euclidean
spaces are analyzed in Chapter Seven.

The book contains enough material for a three- or four-hour semester
course. A possible outline for a three-hour semester course is as follows:
Chapter One, 8 days; Chapter Two, 4 days; Chapter Three, 6 days; Chapter
Four, 5 days; Chapter Five, 4 days; Chapter Six, 6 days; Chapter Seven,
6 days. Chapter Eight can be omitted without any harm to the course. On
the other hand, it makes good reading for the superior student and can be
used in this way.

Richard E. Johnson
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Chapter One

Vector Spaces

1. FIELDS

Among the common number systems of mathematics are:

Z, the system of integers,

@, the system of rational numbers,
R, the system of real numbers,

T, the system of complex numbers.

These are increasingly larger sets of numbers,

ZCQCRCC.

Each of these systems is closed under the operations of addition and multi-
plication, which have the following properties:

1.1 a+b=>b+a, ab = ba (Commutative laws),

1.2 a4+ bB+c¢)=(@+ b)+ c, albc) = (ab)c (Associative laws),

1.3  (a+ b)c = ac + be, c(a+ b) = ca+ cb (Distributive law).

There exist numbers 0 and 1 with the following special property:

1.4 Ot+a=a+0=ga, l-a=a-1=a (Identity elements).

Thus 0 is called the additive identity element and 1 the multiplicative identity
element. Each number a has an opposite —a, called the negative of g, having
the following property:

1.5 a—+ (—a) = (—a)+ a =0 (Additive inverse).
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The five properties above hold for all elements a, b, ¢ in any one of the
systems Z, Q, R, or C. The systems @, R, and C also have the following
additional property: each nonzero number a has a reciprocal 1/a such that

1

1.6 s == nl = 1 (Multiplicative inverse).

We are now in a position to make the following definition.

1.7. DEFINITION OF A FIELD. An algebraic system composed of a set
of elements F and operations of addition and multiplication in F is called
a field if and only if the operations have properties 1.1 through 1.6.

Thus, according to this definition, the systems of rational numbers, real
numbers, and complex numbers are examples of fields.

There exist fields of quite a different nature from Q, R, and C. For ex-
ample, for each prime number p there is a unique field having exactly p
elements. This field is called the field of integers modulo p and is denoted
by Z,,

Z,=10,1,2,...,p— 1}.

Addition and multiplication in Z, are defined to be the same as addition
and multiplication in Z, reduced modulo p. That is, to find @ + b and a-b
for a,b € Z,, we first compute them in Z and then subtract multiples of p
from a + b and a-b until we find a remainder in Z,. For example, in Z
we have 3+ 4 = 7; therefore, 3+4=7—5=21in Zs, and 3+ 4 =
7—17=0in Z;. Similarly, 3-4 = 12 in Z; therefore 3-4 = 12 — 10 = 2
in Zs, and 3-4 = 12 — 7 = 5 in Z,. It is not hard to show that Z, with
operations of addition and multiplication so defined is a field.

Since each of the fields Z,, p a prime, is finite, we can give complete addi-
tion and multiplication tables for it. For example, the field Z, = {0, 1}
has the simple tables:

+10 1 101
0/0 1 0olo o
111 0 110 1

The field Z; = {0, 1, 2} has the following addition and multiplication tables:
01 2
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Rational numbers and real numbers are ordered in the sense that for any
two such numbers, one is greater than or equal to the other. Relative to this
relation of ““greater than or equal to,” Q and R are ordered fields as defined
below.

1.8. DEFINITION OF AN ORDERED FIELD. A field F is called an
ordered field if and only if it has a relation > with the following properties:

(1) a>aforalla& F (Reflexive).

(2) Ifa>bandb > a,thena = b (Antisymmetric).
(3) Ifa>bandb > ¢, then a > ¢ (Transitive).

(4) Foralla, b & F,eithera>borb > a.

(5) Ifa>b,thena+c>b+ cforallc & F.

(6) Ifa> b, then ac > bc forall ¢ > 0.

The other order relations >, <, and < are defined as usual. Thus, a > b
if and only if a > b and a # b; a < b if and only if b6 > a; and a < b if
and only if b > a. The relation > (and, similarly, <) has the following
properties:

1.9 Ifa> band b > c, then a > ¢ (Transitive).
1.10 Ifa> b,thena+ ¢ > b+ cforallc € F.
1.11 If a > b, then ac > bc for all ¢ > 0.

Proof of 1.9: Ifa>band b > c,thena > b and b > c so thata > ¢
by 1.8(3). We claim a > ¢; for if a = ¢, then ¢ > b, b > ¢, and b = c by
1.8(2), contrary to the assumption that b > c.

Proof of 1.10: Ifa>b,thena+c>b+cforalc & F. Ifa+c =
b + c, then a = b by the additive cancellation law, contrary to the fact that
a>b.Hencea+c> b+ c.

Proof of 1.11: If a > b and ¢ > 0, then ac > bc by 1.8(6). If ac = b,
then a = b by the multiplicative cancellation law (since ¢ # 0). This is
contrary to the fact that a > b. Hence ac > bc.

If we let F be an ordered field and

Ft={a& Fla> 0}, F-={aE€F|a<0},
then we easily prove the following:
1.12 F* is closed under addition and multiplication.
1.13 F-={—ala& F*}.

By our remarks above, every ordered field F is partitioned into three non-
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overlapping subsets: F*, the set of positive elements; F-, the set of negative
elements; and {0} :

F=F+\U F-U {0}.

Since (—a)? = a® for every nonzero a & F and either @ or —a is in F*,
we have, by 1.12, that

1.14 at> 0 for all nonzero a € F.

In particular, 1 > Osince 1> = 1. Inturn, 1 +1=2>0,14+2=3> 0,
and so on, by the closure of F* under addition.

A field such as Z, is not ordered. For if Z, were ordered, then 1 > 0,
2> 0, and so on, up to (p — 1) + 1> 0, contrary to the fact that
@-D+1=0.

The field € of complex numbers is also not ordered. Thus it contains an
element 7/ such that i = —1, and if it were ordered, then both —1 and 1
would be in C* by 1.14. However, then 0 = (—1)+ 1 & C+ by 1.12,
contrary to the fact that 0 & C+.

If Fis an ordered field and A C F, 4 # (&, the empty set, then an element
b of F is called an wupper bound of set A if and only if x < b for all x € A.
Similarly, ¢ & F is called a lower bound of set A if and only if ¢ < x for
all x € 4. If b is an upper bound of A4, whereas no element of F smaller
than b is an upper bound of A, then b is called a least upper bound (1.u.b.)
of set 4. By definition, if a set has a L.u.b., then the l.u.b. is unique. However,
a set need not have a l.u.b. The greatest lower bound (g.1.b.) of a set is defined
similarly.

An ordered field F is called complete if and only if every subset of F which
has an upper bound has a lL.u.b. It is easily demonstrated that every subset
of a complete field which has a lower bound has a g.l.b. It may be proved
that the field R of real numbers is uniquely characterized by the following
statement.

1.15. The field R is a complete ordered field.

This characterization of R allows us to show, for example, that every

a € R+ has a unique nth root Va € R+ for every integer n > 1. Thus it
can be shown that

Va=1lub. {xERt x < a}.
The field C of complex numbers is given by
C={a+bilabec R}, where 2= —1.

An interesting property of R is that it can be used as a set of coordinates
for the points on a line L. When this is done in the usual way, each point
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on L is assigned a unique real number as its coordinate, and each real num-
ber is the coordinate of a unique point on L. Furthermore, the order in R
is preserved on L; i.e., if point B is between points 4 and C on L, then the
coordinate of B is between the coordinates of 4 and C. An arrowhead is
placed on L to indicate the direction of increasing coordinates, as shown in
Fig. 1.1.

\Aw

Figure 1.1

We shall call a line L having R as a coordinate system a coordinate line
or a coordinate axis. The point on L with coordinate O is called the origin.

The numbers are assigned in a regular way on a coordinate line so that
distances may be easily computed as follows.

1.16. DISTANCE FORMULA ON A LINE. If points 4 and B on a
coordinate line have respective coordinates a and b, then the distance d(A4, B)
between 4 and B is given by

d(A, B) = |b — a|.

At times it is convenient to use directed distances on a coordinate line L.
If points 4 and B on L have respective coordinates a and b, then the directed
distance from A to B is defined to be b — a. Thus, by definition, the directed
distance from A4 to B is simply d(A, B) if the direction from A to B is the
direction of L, zero if A = B, and —d(A, B) if the direction from A4 to B
is opposite to the direction of L.

The set of all ordered pairs of real numbers is denoted by R2 Thus, we
have

Rz = {(a,b) | a, b € R}

We can use R? as a set of coordinates for the points in a plane. This is usually
done as shown in Fig. 1.2. Thus, two perpendicular coordinate axes are
chosen in the plane so that they intersect at their origins. One of the coordi-
nate axes is labeled the x-axis and the other the y-axis. Each point P has
unique coordinates (a, b) in R*, where the coordinate of the foot of the
perpendicular drawn from P to the x-axis is ¢ and from P to the y-axis is b.
Also, each ordered pair (a, ) in R? are the coordinates of a unique point
in the plane chosen in the obvious way. If point P has coordinate (a, b) in

2 then we call a the x-coordinate and b the y-coordinate of P. We shall call
a plane having K? as a set of coordinates in the manner described above a
rectangular coordinate plane or a Cartesian plane.
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Figure 1.2

If the x-axis and the y-axis in a Cartesian plane have the same scale, then
we can find the distance between any two points in the plane as follows.

1.17. DISTANCE FORMULA IN A PLANE. If points 4 and B in a
coordinate plane have respective coordinates (a1, @;) and (by, bs), then the
distance d(A4, B) between 4 and B is given by

d(A, B) = \/(a]_ = b],)2 + (02 = bz)z.

We shall not give the proof of 1.17. It follows readily from the Pythagorean
Theorem and 1.16.

The set of all ordered triplets of real numbers is denoted by R2. Thus, we
have

R® = {(a,b,¢)|a,b,c € R}.

We can use R? as a set of coordinates for the points in space. This is usually
accomplished by selecting three mutually perpendicular coordinate axes
intersecting at their origins. Let us label these axes the x-axis, the y-axis,
and the z-axis. Each point P in space has unique coordinates (g, b, ¢) in R?,
where the coordinate of the foot of the perpendicular drawn from P to the
x-axis is @, from P to the y-axis is b, and from P to the z-axis is ¢ (Fig. 1.3).
Also, each ordered triplet (a, b, ¢) in R?® are the coordinates of a unique
point in space. If P has coordinates (g, b, ¢), then we call a the x-coordinate,
b the y-coordinate, and c the z-coordinate of P. We shall call space Cartesian
three-space if coordinates are assigned to the points of space in the manner
described above.
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If the coordinate axes in a Cartesian three-space have the same scale,
then the distance between two points can be found as follows.

1.18. DISTANCE FORMULA IN SPACE. If points 4 and B in co-
ordinate three-space have respective coordinates (ai, as, a;) and (by, by, b3),
then the distance d(A4, B) between A4 and B is given by

d(A, B) = \/(01 e 171)2 + (az - b2)2 + (aa = ba)z-

The proof of 1.18 follows easily from the Pythagorean Theorem and 1.17.

2. VECTOR SPACES

A vector is an element of a vector space. In turn, a vector space is a set of
objects, called vectors, that is closed under operations of addition and scalar
multiplication and which satisfies certain algebraic laws. A precise definition
of a vector space is given below.

It is worthwhile to study vector spaces for the reason that many of the
algebraic systems encountered in applications of mathematics are in essence
vector spaces. By studying general vector spaces, without regard to the nature
of the elements, we can develop the properties common to all vector spaces.

1.19. DEFINITION OF A VECTOR SPACE. A vector space consists
of a set ¥V, an operation of addition in V, and an operation of scalar multi-
plication of ¥ by a field F. Addition in V has the following properties:

(1) x+y=y+xforallx,y €V (Commutative law).



