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Preface

EVER since Riemann’s use of the theta transformation formula in one
of his proofs of the functional equation for the zeta-function, number-
theorists have been fascinated by various interactions between the zeta-
function and automorphic forms. These experiences, however, have
remained episodic like rare glimpses of crests, for most of them ensued
from apparently spontaneous relations of the zeta-function with a variety
of Eisenstein series. Nevertheless such glimpses are highly suggestive of
a grand view over and far beyond the Eisenstein ridge, and bring forth
the notion of a kamuy-mintar where the entire collection of automorphic
forms contribute to the formation of the zeta-function.

My aim in the present monograph is to try to substantiate this belief
by demonstrating that the zeta-function has indeed a structure tightly
supported by all automorphic forms. The story begins with an unabridged
treatment of the spectral resolution of the non-Euclidean Laplacian, and
continues to a theory of trace formulas. The fundamental means thus
readied are subsequently mustered up for the quest to find an explicit
formula for the fourth power moment of the zeta-values. Then the zeta-
function emerges as a magnificent peak embracing infinitely many gems
called automorphic L-functions representing the spectrum.

My best thanks are due to my friends A. Ivic and M. Jutila for their
unfailing encouragement, and to D. Tranah, P. Jackson, and all of the
personnel of the Cambridge University Press engaged in this project for
sharing their professional vigor. I must also thank my family for the
comfort and the music that have been sustaining my scientific life.

Tokyo
January, 1997 Y. M.
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Convention and assumed background

Once introduced most symbols will remain effective throughout the se-
quel. Some of them are naturally standard. Thus Z, Q, R, C are sets of all
integers, rationals, reals, and complex numbers, respectively. For example
the group composed of all n x n integral matrices with determinant equal
to 1 is denoted by SL(n,Z). The arithmetic functions 6,(n) and di(n)
stand, respectively, for the sum of the ath powers of divisors of n and
for the number of ways of expressing n as a product of k integral factors.
In particular, d(n) = d»(n) is the divisor function. The Bessel functions
are denoted by I,, J,, K, as usual. We use the term K-Bessel function
to indicate K, without the specification of the order v; and the same
convention applies to other Bessel functions as well. The symbol T is
for the gamma function, and I' is for the full modular group introduced
in Section 1.1. The dependency of implied constants on others will not
always be explained, since it is more or less clear from the context.

Some knowledge of integrals involving basic transcendental functions is
certainly helpful. For this purpose Lebedev’s book [38] is quite handy. But
there are occasions when Titchmarsh [69], Watson [74], and Whittaker
and Watson [75] give more precise information, though proofs of most
integral formulas and relevant estimates are given or at least briefly
indicated either in the text or in the respective notes. In addition to these
standard books, Sonine’s article [68], Vilenkin’s book [71], and the table
[15] by Gradshteyn and Ryzhik are recommended.

Readers are supposed to have ample knowledge of the zeta-function
such as that developed in Titchmarsh [70] as well as in Ivic [19]. In
fact this monograph is, in part, a continuation of their books. Thus, for
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Convention and assumed background ix
instance, bounds like

(logt)™ < [C(L+it)| < logt,  ((} +ir) < t¥ logt,
T
/ (3 +iw)|*du < T(log T)* (¢, T = 2)
0

are used freely under the term classical estimates. On the other hand no
experience in the theory of automorphic functions is assumed. The first
three chapters can be taken for an introduction to the subject.

The references are limited to the essentials. Suggestions for further
readings may be found in the notes and the articles quoted there.
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1

Non-Euclidean harmonics

Our story of the Riemann zeta-function is to be unfolded on a stage
filled with non-Euclidean harmonics. Accordingly we need first to tune
our principal instrument. We are going to prove in this initial chapter a
spectral resolution of the non-Euclidean Laplacian

A = —y*((3/2x)* + (8/dy)*)

with minimum prerequisites. The entire theory originated in a seminal
work of H. Maass, which was later developed by W. Roelcke, A. Selberg,
and many others. Our account is an elementary approach to their theory
in the case of the full modular group. Despite this specialization it
will not be hard to see that our argument extends to general arithmetic
situations.

1.1 Basic concepts
To begin with, we shall equip the upper half plane

H={z=x+4+iy : —0o<x<o, y>0}

with the non-Euclidean differentiable structure. For this purpose we

introduce the group T(J) consisting of all real fractional linear transfor-
mations

s az+b

) lz+h

The y’s map H onto itself conformally. To see this it is enough to note
that y has the inverse map z — (hz — b)/(—Iz + a), and that

(ah—bl =1; a,b,1,h € R). (1.1.1)

Imy(z) = (1.1.2)

y d B i
|lz + h|2’ dz v(z) = Iz + h)?



2 Non-Euclidean harmonics

The elements of T(H) are also rigid motions acting on H in the sense
that JH carries the non-Euclidean metric

y Uz = y~'((dx)? + (dy))?

which is invariant with respect to any y € T(H). This is a simple
consequence of the relations in (1.1.2), since they imply

d
(Imy(z))~"| EY(Z)I =(Imz)~",

The invariance of the metric is inherited by A as being the negative of
the corresponding Laplace—Beltrami operator. It can also be checked by
direct computation: Putting f(x, y) = F(u,v) with y(x + iy) = u+ iv and
invoking the Cauchy-Riemann equation for the function y(z), we have

Af(x9y) = —.Vz(u,z‘ ete UJZ;)(Fuu + Fy)
d
= _y2'EY(Z)|2(Fuu +Fy) = _vz(Fuu + Fy),

which amounts to A-y =y - A, i.e,, the invariance of A. We have also the
invariance of the non-Euclidean area element

du(z) = y *dxdy

induced by the metric. This can be confirmed by computing the Jacobian
of the map y :

d(u,v)

|6(x,y)
Further, we have the invariance of the non-Euclidean outer-normal
derivative

d
| == IE?(Z)I2 = (v/y)%.

0 dy 0 dx 0
Yan =@zl ax ~ idzl oy
taken along any piecewise smooth curve in H : In fact we have, for f,F
as above,
of dy
{

dx
yﬁ—y ﬁ(Fuux'}’Fvvx)—ﬁ

d dx
= y{é(nv, — Futty) = 1 (~Fue + Fuae)}

o g g O
y ldz| “  |dz|" "7 “on’

This will be used in conjunction with Green’s formula, which is a basic
tool in the discussion below.

(Fyuy + Fvv_v)}



1.1 Basic concepts 3

We next define the full modular group I' as the subgroup of T(H)
that is composed of those maps with a,b,l,h € Z in (1.1.1). This signifies
in particular that we do not regard I' as a matrix group. Thus, if an
element of I' is pulled back to SL(2,Z) in an obvious way, then we get
two image matrices with corresponding entries having opposite signs;
that is,

I =SL2,2)/{+1)}.

In any event readers should bear in mind that we are always dealing
with transformations of H.

The most basic fact about the motions caused by the elements of I
is that they are discontinuous. This means that the action of I' on H
is comparable to, e.g., that of the group generated by two independent
linear translations acting on the Euclidean plane, which is equivalent to
tessellating C with congruent parallelograms. To make the situation with
I' explicit, we introduce the fundamental domain of I

F={zeH :|z| = 1,|x| < ]}, (1.1.3)
and also the notation
z=zZ mod

that indicates the existence of a y € I' such that y(z) = z’. Then we have

Lemma 1.1 The family of domains {y(F), y € I'} induces a tessellation of
3.

Proof We fix an arbitrary z € H, and consider max[Imy(z)] as y given
in (1.1.1) varies in I'. This should exist. For the first relation in (1.1.2)
implies that Imy(z) takes its maximum when |lz + h| takes its minimum;
and the latter can readily be seen to exist by observing that [z +h,y € I',
are among the lattice points generated by 1 and z. We assume that
29 = Xo + iyp has the maximum imaginary part in this context; naturally
we may assume also that |xg| < % Then we note that —1/zy = zo mod I',
and thus Im(—1/z9) = yolzo|~2 < yo. Hence we have |zg| > 1, namely
zg € F. This means that the tiles y(F), y € I', cover H. We shall next show
that these tiles have common points only on their boundaries. This is
clearly equivalent to the assertion that if z; = x; +iy, and y(z;) = x,+iy;
with a non-trivial y € I' are in F then both are on dF, the boundary of
J. To see this let y be as in (1.1.1) with integral coefficients. Obviously we
may suppose also that [ > 0 as well as y, > y,. Comparing the imaginary



4 Non-Euclidean harmonics

parts of z; and y(z;) we have |lzy + h| < 1, which implies [y; < 1. On
noting that y; > 1./3, we find that [ is equal either to 0 or to 1. If | =0
then ah = 1; and y(z) = z £ b. Here b = 0 is excluded because of an
obvious reason. Thus b = +1, and z;,y(z;) € dF. On the other hand, if
I =1 then |zy +h| < 1. Thus |h| < 1. If h =0 then |z;| =1 and y(z) =
a—1/z;and if h = +1 then z; = }(F1+i/3) and y(z) = a—1/(z £ 1). We
readily get |a| < 1, and hence z;,y(z;) € 0F again. This ends the proof.

We note that tiles y(F), y € I', are generally different in shape for our
Euclidean eyes, but if they were corrected with the metric y~!|dz| they
would look just like each other. We remark also that the left and the
right vertical edges of F are obviously equivalent to each other mod I',
and that the circular part of ¢F is mapped onto itself by z +— —1/z; thus
the left half of the arc is equivalent to the right half. The identification
of the equivalent boundary elements of F yields a punctured Riemann
surface. The puncture corresponds to the point at infinity, and will be
called the cusp of I' in the sequel. The Riemann surface thus obtained
is designated as the manifold F, which carries the metric y~'|dz| with
an obvious localization. Without this specification the symbol F stands
for the fundamental domain of I'. In passing we stress that the possible
overlapping of y()’s on their boundaries will not raise any pathological
situations in our later discussion.

Turning to the analytical aspect, we introduce the concept of auto-
morphy: A function f defined on H is said to be I'-automorphic if
f(y(z)) = f(z) for all y € I'. This is the same as to have f defined
originally on the manifold ¥ and to view it as a function over H in an
obvious way. In this context the invariance of A means precisely that A
can be regarded as a differential operator acting on the manifold &.

A very important example of I' -automorphic functions is the Poincaré
series: We put, for a non-negative integer m and a complex number s,

Pn(z,s) = E (Im y(z))°e(my(z)) (ze3H,Res>1), (1.14)
YErL\I'

where e(z) = exp(2miz), 'y is the stabilizer in I' of the cusp, ie., the
cyclic subgroup generated by the translation z+ z + 1, and y runs over
a representative set of the left cosets of I', in I'. The summands are
independent of the choice of the representatives, and the sum converges
absolutely, as can be seen from the expression (1.1.5) below. Hence
P(z,s) is I' -automorphic. We note that the relation ny~! € I'.., where
v, eTr,yz)=(az+b)/(lz+ h), n(z)=(dz+b)/(I'z+ k) with [,I' >0,
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is equivalent either to I =1I', h =} or to y,n € I'x. Also we observe that
for I >0

a 1
ST - QDU - S h=1mod .
Y& =T~z V=™
Thus we have
© ® .. /mh’ 2nmi
Pu(z,5) = ye(mz)+y°* D> D llz+Hh] zs"(T) exp ( Tz + h))
I=1 h=—c0

(hD)=1

(1.1.5)
with hh* = 1 mod 1. We classify the summands according to h mod I, so
that we have

o0 1

Pm(z,5) = ye(mz) +y* Y 17 " e(mh’/I)
4
= s 2mmi
X Z |Z+h/[+n| eXp(—m)

Applying Poisson’s sum-formula to the last sum, we get, for Res > 1,

o0

P.(z,s) =y’e(mz) + y'~* Z e(nx)Zl“z“S(m,n 1)

n=—00 =1

® . 2nm .
x[mexp(—Znnyél—m)(l+fz) dé,  (1.16)

where

MN

S(m,n;l) = e((hm + h*n)/1) (1.1.7)

1

—

!

b))

(

is the Kloosterman sum. Here we have performed an exchange of the
order of summation, which is legitimate because the convergence is
absolute, as can be seen by shifting the path to Im¢ = —%sgn(n) in the
integral. The formula (1.1.6) will be used in the next chapter.

In particular we put

E(z,5)=Po(z.5)= ) (Imy(2))’, (1.18)
YEl\I
and call it the Eisenstein series attached to I'. This function will appear

at various important stages of our discussion. Its principal properties are
collected in



6 Non-Euclidean harmonics

Lemma 1.2 For any z € H the function E(z,s) is meromorphic in s over
the whole of C, and we have the expansion
E(z,s) = y* + or(s)y'™

2 1
f@% 5~ or-anK, y@ned).  (119)

where

B (s—@s—1)  a* 01 —s){(1 —5)
or(s) = TGs)2s) T()(29) :

Hence E(z,s) is regular for Res > % save for the simple pole at s = 1 with
residue 3/m, and satisfies the functional equation

E(z,s) = or(s)E(z,1 —5s) (1.1.11)

(1.1.10)

as well as the differential equation

AE(z,s) = s(1 — s)E(z, 5). (1.1.12)

Proof We invoke first the functional equation

L(s) = 2n5~! sin(%sn)r(l —s){(1—y5)

=ns_%%%:)s))§(1—s) (1.1.13)
and the representation
ag(n)=c(1—c)§:1¢-‘c,(n) (n>0,Re¢ <0), (1.1.14)
where .
ci(n) = S(n,0;1) = i e(nh/l) (1.1.15)

h=1
(h)=1
is the Ramanujan sum. When Res > 1 the expansion (1.1.9) is a

consequence of the relations (1.1.6) and (1.1.14) with (1.1.13), since we
have

/w; E=/n (v) (Rev > 0)

—oo (1 4 E2)+} (v -+-
and

e _cosyd) e _ (y/2)" | B
/oo (1+ é2)v+§ d¢ \/_l-.(v 3 %)Kv(}’) (y >0; Rev > 2)_
(1.1.16)
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We then note the other representation

Ky(y) = %/0 g exp (— (€ +E7N)dE, (1.1.17)

which shows that K,(y) is entire in v, K,(y) = K_,(y) for Rey > 0, and
moreover

K,(y)=(1 +o(1))(2ly)’e-y (y = 4o0) (1.1.18)

for any fixed v. In fact this asymptotic formula can readily be proved
by putting ¢ = 1 4+ r in (1.1.17) and observing that the main part of the
integral comes from the short interval |r| < y~2/5. Hence E(z, s) exists as
a meromorphic function of s over C. The assertion (1.1.11) follows from
(1.1.13) and these properties of K,(y). As to (1.1.12) it is a consequence
of the definition (1.1.8) and

A[(Im y(2))*] = s(1 — s)(Imy(z))* (s € C, y € T(H)), (1.1.19)

which is due to the invariance of A. An alternative proof is to use the
expansion (1.1.9) and the fact that ﬁKs_ ! (2m|n|y) is a solution of the
differential equation

[Dsngl(y) = —y%g"(y) + ((27ny)* + s(s — 1))g(y) =0 (¥ >0) (1.1.20)

(see the next lemma). This ends the proof of the lemma.

It is appropriate to make here a little digression about the nature of
the differential operator D;,: It is a result of the application of the
separation of variables to the operator A + s(s — 1). In fact we have
formally

(A+s(s — D)) D an(y)e(nx)} = [Dspanl(y)e(nx). (1.1.21)

This relation and the following assertion will be used in our later discus-
sion.

Lemma 1.3 The differential equation (1.1.20) with n > O has linearly in-
dependent solutions \/YKS_%(Znny) and \/ils_%(Znny). Thus the resolvent
kernel of the differential operator y=2D;,, n > 0, is equal to

\/7)715_%(27mv)K5_%(2nny) ifv<y,
gsn(y,v) =

\/WIS_%(Znny)Ks_%(Znnv) ifv>y.

(1.1.22)
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Proof That the above two functions are solutions of (1.1.20), and that the
Wronskian of these is equal to 1, can be checked by using the recurrence
relations
Lo1(2) + Ly41(2) = 2I,(2),  Ih—1(2) — L1 (2) = 2vz™ 'L (2),
K,_1(2) + Kv11(2) = =2K(2), K,-1(z) = Ky41(z) = =2vz7 'K, (2),

(1.1.23)
and also the definitions
" (/2
Lo = FE g Do Tk + 1)’ =l
k=0
n
Kdz)= m{l_v(z)——lv(z)}, (1.1.25)

where z' = exp(vlogz) with |argz| < m. The rest of the proof is
a standard application of the general theory of ordinary differential
equations. The excluded case n = 0 is easy, and left for readers. This
ends the proof.

Proceeding to our main issue, we let L*(F,du) stand for the set of all
I' -automorphic f’s such that

If1? = /5 If(@)Pdulz) < +oo.

It should be observed that C < L*(F,dp), since we have

T
d = _,
/3_ uz) =3

The set L*(F,dp) is a Hilbert space equipped with the Petersson inner-
product

Wbl = /? F1@TEDdu(z). (1.1.26)

We are going to diagonalize the operator A in L?(F,dy); that is, we shall
try to find a set of I'-automorphic functions which spans L*(F,du) and
in which the operator A is well-defined and reduces, in an informal sense,
to a scalar multiplication at each element. To this end we introduce the
linear set defined on the manifold F:

B*(F) = {f € C*(9) :
each partial derivative of f(z) is of rapid decay}.  (1.1.27)

Here, that a I'-automorphic function g(z) is of rapid decay means that
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g(z) = O(y™™) for any M > 0 as z € F tends to the cusp, where the
implied constant may depend on M. This is dense in L%(F,dp), for it
contains all C®-functions having compact supports on the manifold F.
Then A is a symmetric operator in the sense that

(Af1.f2) = (f1,Af2)  (f1,f2 € BZ(F)). (1.1.28)
In fact we have, by Green’s formula,
(Afi,f2) = /3_ YAVfi(2) - VFaEduz), (1.1.29)

where V denotes the ordinary gradient. For the manifold ¥ has no
boundary, and the integrand is of rapid decay around the cusp. More
precisely, we apply Green’s formula to

(Af1,f2) = lim / Af1(2)f2(2)du(z), (1.1.30)
—o [,
where Fy = FN{z : Imz < Y}. We have

(Af1.f2) = Jim / Vfi(z) VFa(z) dxdy
~ lim / N ome )"’—Z'

= /:;Vfl(z) -Vfa(z) dxdy
f1

— lim (x+1Y)f2(x+tY)dx (1.1.31)
which gives (1.1.29). Here we have used the invariance of (df,/dn)f>|dz|
and the consequential cancellation of integrals on the boundary elements
of F which are equivalent mod I’ to each other. This cancellation is
due to the invariance of the non-Euclidean outer-normal derivative, and
to the reverse of orientation in the corresponding boundary elements.
Intuitively it is the same as what happens when the process of folding
and pasting is applied to F to transform it into a Riemann surface.
The formula (1.1.29) implies, in particular,

(Af.f) >0 (1.1.32)

for any non-constant f € B®(F). This and (1.1.28) mean that A is a semi-
bounded symmetric operator which has a dense domain in L3(F,dpu).
Thus we could appeal to the general theory on the self-adjoint exten-
sion of such an operator with the effect of a shorter presentation. We



