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Preface

This book contains results of more than a decade’s effort on coupled deformation
and diffusion obtained in research performed at the Institute of Fracture and Solid
Mechanics, Lehigh University. Despite the overwhelming number of theories on
this subject, little is known on the assessment of coupling effects because of the
inherent difficulties associated with experimentation. A case in point is couple
thermoelasticity, a theory that has remained virtually unused in practice. This is
indicative of the inadequacy of conventional approaches.

The interdependence of heat, moisture and deformation arises in many engineer-
ing problems of practical interest. Whether these effects are coupled or not depend
on the transient character of the boundary conditions. Special attention is given
to finding the coupling constants. Invoked is the assumption that the physical
parameters should be independent of the specified boundary conditions. They can

aus be extracted from known experimental data for situations where coupling

¢. ts are relatively weak and then applied to predict strong coupling effects as
bou ‘ary conditions are altered. This is illustrated for the T300/5208 material
commn. “ly used in composites and permits a more reliable evaluation of material
behavin, 1nder extreme environmental conditions. The lack of this knowledge can
often be a major deterrent to the achievement of new technological advances.

The reader will recognize that the material in this book does not follow the main
stream of research on moisture-temperature diffusion and deformation. The data
measurement approach is not regarded to be informative simply because test
results collected from laboratory conditions are not the same as those used in
service. A methodology was needed to complete this data transfer process. In this
respect, the authors are grateful to two particular individuals of the U.S. govern-
ment agencies who had the foresight and wisdom to break new grounds and to
support ideas that may have been regarded as unorthodox at the time. Many of the
results would, no doubt, have remained unknown without their support. To be
recognized is the encouragement and direction provided by Mr. W. J. Walker of
the Air Force Office of Scientific Research (AFOSR) in Washington, D.C. The
project initiated in 1976 was terminated immediately in 1980 upon his departure
from AFOSR. The Materials Technology Laboratory* (MTL) in Watertown,

*It was then known as the Army Materials and Mechanics Research Center (AMMRC).
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Massachusetts, under the direction of Mr. J. F. Dignam, continued the support
until 1984 when the basic problem of heat, moisture and deformation was under-
stood and reduced to the stage where results can be easily obtained for application.

Chapter 1 gives a brief review of the classical diffusion theories involving
temperature and moisture. Defined are the temperature and moisture diffusion
coefhicients and the methods by which they can be measured experimentally.
Typical data are quoted for the T300/5208 graphite/epoxy laminate, a material that
will be analyzed throughout the book. Coupling between heat and moisture
transfer is shown to be governed by a system of simultaneous partial differential
equations whose solutions are dictated by the time-dependent boundary con-
ditions. These are derived in Chapter 2 with the coupling constants determined for
the T300/5208 laminate. This was made possible by the assumption that the
uncoupled experimental data remain valid for the case of sudden moisture rise as
the coupling effects are relatively weak. The same constants are then applied to
analyze the situation of sudden temperature rise where coupling between moisture
and temperature becomes significant.

Closed form solutions for the hygrothermal stresses in a slab and solid with a
spherical cavity are obtained in Chapter 3. Initial and final values of moisture
and/or temperature are specified on the boundary and they give rise to stresses that
fluctuate with time and space variable. Coupling is again shown to be more
pronounced when temperature is prescribed. For more complex geometries and/or
boundary conditions, numerical method must be applied. Outlined in Chapter 4 is
the development of the finite element procedure in conjunction with Laplace
transform. This circumvents the difficulty that arises in selecting the appropriate
time and space increment. Solutions to several non-trivial boundary-value prob-
lems are presented. They consist of sudden application of temperature and/or
moisture on a half-space, circular hole and elliptical cavity. The resulting hygro-
thermal stresses can achieve high elevation near the boundary, particularly when
the local curvature comes into play as in the case of a narrow ellipse. Special
attention was also given to reduction of the size of the finite elements in regions
where accuracy is needed.

Chapter 5 defines a thermodynamic potential to derive a system of equations
that account for the interdependence of heat, moisture and deformation. Because
of coupling between diffusion and deformation, the diffusion coefficients will also
be affected when approximations are made to reduce the three-dimensional equa-
tions to two dimensions. In particular, the coupling constants in plane strain and
plane stress must be carefully distinguished. They are derived for the T300/5208
composite. For relatively simple geometries and boundary conditions, the complex
variable formulation may be adopted together with conformal mapping to yield
close form solutions. This is given in Chapter 6. For a circular region, coupling
effects are shown to be more significant when the loads are localized. The same
applies to the way with which temperature and/or moisture are specified on the
boundary.

The governing equations in Chapter 7 for coupled diffusion and deformation are
formally the same as those in Chapter 4 when deformation is not coupled.
Therefore, the Laplace transform finite element procedure can again be used to

VI
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solve the problems of a slab, circular hole and elliptical cavity. In addition to
specifying surface temperature and moisture, boundary stress will also affect the
outcome. Large deviations are observed between the coupled and uncoupled
results depending on the time and change in the local geometry.

The last chapter derives the strain energy density function for diffusion and
deformation coupled problems. This function contains one part that is dominated
by mechanical deformation and another by diffusion. Their variations with dif-
ferent boundary conditions are displayed numerically for a crack approximated by
a narrow ellipse with a ten-to-one aspect ratio. Possible failure by fracture and/or
permanent deformation are also discussed briefly in connection with the strain
energy density function.

The final completion of this book was not without a struggle. Many difficulties
encountered in the theoretical formulation and numerical calculation had to be
overcome. This involved the efforts of a number of individuals. Acknowledgement
is due to Professor R. J. Hartranft who jointly developed some of the early formu-
lations. Mr. A. Ogawa of the National Aerospace Laboratory in Japan and
Professor I. C. Tsai of the National Taiwan University in the Republic of China
also made major contributions in applying Laplace transform to the finite element
method. A great deal of expediency was thus gained in the choice of space and
time increments. It was unfortunate that Dr. M. T. Shih had to relinquish his
co-authorship when he left the Institute of Fracture and Solid Mechanics to take
a position with the Bell Telephone Laboratories. Thanks are due to the calculations
he made for determining some of the physical constants.

The authors are particularly grateful to Mrs. Barbara Delazaro and Mrs.
Constance Weaver for expertly typing the manuscript that had undergone frequent
revisions.
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Classical diffusion theories

1.1 Introduction

Diffusion is the physical process by which atoms and molecules are transported
from one position of a system to another. Atoms or molecules in solids occupy
definite equilibrium positions. They, however, will migrate if their concentrations
are disturbed. The atoms will then diffuse from the region of higher concentration
to that of lower concentration. Such a condition exists in solids containing mech-
anical imperfections and internal stresses. The rate of diffusion increases very
rapidly as the temperature is increased. When the temperature becomes very high,
thermal agitation can become violent and pull the atoms and molecules apart
resulting in melting or disintegration of the solid. Concentration gradient can also be
developed by nonuniform distribution of moisture. The process of moisture
transfer is fundamentally equivalent to that of heat transfer and each process may
or may not be treated independently depending on the physical conditions.

The nonuniform transfer of heat and/or moisture through solids are relevant to
the design of high performance structures as their influences can cause dimensional
changes of structural elements that, in turn, lead to internal stresses and/or strains.
If the physical process is of a more active type, caused by capillary flow of fluids into
voids, stresses can occur even when macroscopic deformation is uniform. These fluid
or moisture induced stresses can result in the lowering of stiffness and strength. The
effect is particularly significant in composites with matrix made of polymeric
materials. Moreover, the thermal environment may also interact with moisture.
Voids and microscopic defects tend to open as temperature is increased while more
fluid is absorbed into the openings. The trapped fluid causes growth of the flaws
when temperature is reduced suddenly. Subsequently, the material is capable of
absorbing more moisture more quickly than before the thermal gradient was applied.
Such a process, if continued, could lead to eventual failure of the soild system.

1.2 Thermal diffusion: heat conduction

Atoms in solids are in constant random motion. If they vibrate symmetrically
about their equilibrium positions, then their average spacing would be constant



Chapter 1  Classical diffusion theories

and there would be no thermal expansion. In the presence of a thermal gradient, heat
will be transmitted as a result of elastic vibrations* of the atoms and molecules. The
interchange of kinetic energy takes place by means of bonds between neighboring
particles in the form of waves. As thermal agitation is more violent at the hot
surface, heat tends to travel in the direction of decreasing temperature.

1.2.1 Law of heat conduction

When the temperature at one end of a solid rod is raised higher than the other,
experience tells us that the temperature at the other end will also be raised in time.
Heat is then said to have travelled along the rod in a direction from the high- to
the low-temperature end. This process known as conduction is not thoroughly
understood but is assumed to occur in an irreversible manner by nature. A useful
concept following from the second law of thermodynamics is that heat exchange can
be reversible if and only if the process occurs at a vanishingly small rate. The driving
force in this process is the temperature gradient. Postulated also from the first law
of thermodynamics is that the heat energy must be conserved along the flow path.
Consider a solid whose temperature may vary from point to point. Let 7(x;, 1)
denote this temperature which is assumed to be a continuous function of the rec-
tangular coordinates x; and time ¢. A basic law of heat conduction may be stated as
T
q; = ki; ox, (1.1)
in which ¢, are the components of the heat flux vector q and d7/dx; the temperature
gradients. The components of the thermal conductivity tensor k are denoted by £,
and are generally considered to be symmetric’, i.e.,

ki = k. (1.2)

i
Hence, heat will not necessarily flow in the direction of the temperature gradient,
if the solid is anisotropic. When the solid possesses no preferred direction of heat
flow, then k,; take the form

k, = kd,, (1.3)

uj

where k does not have to be a constant. It can depend on the space variables and
local temperature, i.e., k = k(x,, T). It was Fourier [5] who first provided the
theoretical basis of the heat conduction equations.

1.2.2 Temperature field

The transient temperature field in a three-dimensional isotropic solid may be
derived by application of equations (1.1), (1.3) and the first law of thermodynamics.

*The dominant mechanism of heat transfer in nonmetals is elastic vibration of the atoms and molecules
}\'hich is a slower mechanism than energy transfer by free electrons [1] that occurs more readily in metals.

The symmetric relation in equation (1.2) is a direct consequence of the assumption that reversal of heat
flow results from reversal of temperature gradient [2]. It can also be deduced from the application of
Onsager’s principle [3].

2



1.2 Thermal diffusion: heat conduction

dx

=3 dy

. —>-[kﬂ,a_
-4 ox  dx

dz

//

ot
(k5 Jdx] dydz

~
S

aT =
—ka—xdydz /

Qdxdydz
x

z

Figure 1.1. Heat conduction in the x-direction for a volume element.

Refer to the differential volume element dxdyd:z in which heat is generated at the
rate Q per unit time per unit volume, Figure 1.1. The quantity of heat entering and
leaving the volume element per unit time is, in general, not the same. Referring to
Figure 1.1, the net gain in the x-direction is

=1 2 =] ] 2
i ‘—(k’l |~k bdgdr = — L(kﬁr)d.\-dyd:.
ox ox Ox X

A
0: ox

(1.4)

Expressions similar to equation (1.4) can be written for the net gain of heat per unit
time in the y- and z-direction. The total heat generated in the volume element is
Q dxdydz while the increase in internal energy of the element per unit time is
given by oc¢(éT/dt) dxdydz. The mass density of the solid is ¢ and the specific
heat* is ¢. For an homogeneous solid, the isotropic thermal conductivity coefficient
k is independent of the space variables and an energy balance gives

T
V(D,VT) + Q _ —
oc ot

(L.5)
in which V” is the Laplacian operator in three dimensions: V> = 0%/0x* + 8°/dy* +
0°/0z*. The thermal diffusivity with units of length squared per unit time is defined as
D, = i (1.6)

co
where ¢ is the heat capacity per unit volume. When regarding heat flow as a
diffusion process, it should be remembered that the diffusing substance is heat not
temperature. Equation (1.5) may be solved by prescribing temperature and/or
temperature gradient on the boundary of the solid. Refer to [4] for a host of
available solutions to equation (1.5) in heat conduction. The governing equation for
an anisotropic and nonhomogeneous medium may also be derived without difficulty.
The thermal diffusivity D, in equation (1.6) can depend on temperature through
the thermal conductivity coefficient k. With Q = 0, equation (1.5) in one dimension,

say x, becomes

T 0D, <0T>3 _ar

h Bl
' 0x* T ot

(1.7)

0x

*No distinction is made here between the specific heat at constant pressure ¢, and specific heat at
constant volume c,.
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A simplified method for treating temperature dependent diffusion coefficient prevails
when equation (1.7) can be linearized. A mean value of D, or D, can thus be defined
as

h

[, D(T)dT

: (1.8)
[, dT

1
and measured experimentally over sufficiently small intervals of temperature 7'
and 7,.

1.3 Moisture diffusion

The diffusion of moisture in a solid is basically the same as that of heat. This was
recognized by Fick [4] following the work of Fourier in heat conduction [5]. If fis
the rate of moisture transfer per unit area and C the moisture concentration, then
in one dimension, say along the x-direction, f can be assumed to be proportional
to 0C/ox, 1.e.,

J = —D,,,(Z—(. (1.9)

(04

The moisture diffusion coefficient is D,, and has units of length squared over time.
The negative sign in equation (1.9) follows the physical notion that moisture
diffusion occurs in the direction of decreasing concentration. For an anisotropic
three-dimensional body, /' may be regarded as the moisture flux vector f with
components corresponding to the axes x;and D,, may be replaced by the components
of a second order tensor as in the case of thermal conductivity.

1.3.1 Moisture concentration field

By a direct mathematical analogy,* C can be identified with 7"and D,, with D,. Hence,
the net gain of moisture transfer across a volume element in the x-direction as shown
in Figure 1.1 can be written down immediately as — d/dx (D,,0C/dx) dx dy dz. In the
absence of any moisture source, the conservation energy gives

oC

DV:C = —,
ot

(1.10)

where the operator V? can depend on x, y and :z.
When the moisture diffusion coefficient varies with concentration, equation
(1.10) in one-dimension becomes

A '}C “.(‘
‘_<D‘_> - (1.11)

ox ox ot

*The flux of moisture / in equation (1.9) would be equivalent to the normalized heat flux g/co. 1.c..
q/lco = — D, (dT)/éx).

4



1.3 Moisture diffusion

Experimental measurement of D,,(C) involves the integration between two moisture
concentrations C, and C,:

[& D,(C) dC
i = e, (1.12)
Jo dC
1
where D, is interpreted as a mean value found by measuring f. The slopes of a D,
versus C plot yield the concentration-dependence of the moisture diffusion coef-

ficient. In what follows, the distinction between D,, and D,, will be understood.

1.3.2 Non-steady state moisture distribution

A simple example is that the case of a slab —h, < x < h, whose surfaces are
maintained at a constant concentration C_. Initially, the slab had a uniform
concentration C, i.e.,

Cx,0) = C,, for t = 0,

(1.13)
c0,1n = C(+h,1) = C,, fort > 0.

A possible solution of non-steady state moisture concentration that statisfies the
conditions in equations (1.13) can be found from equation (1.11) [6, 7] for constant
D .

C—Cy _ | — 4 Z (— 1! cos n(2n — I)x o n’(2n — 1)°tD,,
I A 2m 1 h. i an :
(1.14)

Once C(x, 1) is known, the total amount of moisture m, gained by the slab can be
obtained as

~h

m, = |”‘ C(x, 1) dx. (1.15)

If m, and m, denote the moisture contents corresponding to t = 0 and 1 = o0,
then a normalized form of moisture gained can be written as

m,— my 8 & 1 n’(2n — 1)tD,,
m, —m, 1 n’ ,,ZI 2n — 1) xp [- 4n’ ’ (1:16)

The above solution provides a means for the experimental determination of D,,.

1.3.3 Time dependence

One way of finding D,, is to measure the rate of sorption and desorption of moisture

in a slab. This is accomplished by monitoring the weight of the slab in a vapor

environment under controlled temperature and pressure [8]. The data are then

presented on anm, — my/m, — m,versus \/;/h,‘ plot. The curve is initially linear and

consistent with Boltzmann’s solution for diffusion in a semi-infinite medium [9], i.e.,
m, 4 tD,,

= — [—. 1.17
m, \/E h ( )
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INITIAL SLOPE

Vizh,

Figure 1.2. Schematic of variations of normalized moisture content with time.

It follows from equations (1.17) and (1.16) that

B n|d(m, — my/m, — m, g o | (m, — my)/(m, — my) £
"6 d (\/1/h,) 16 Jilh,

(1.18)

can be deduced from the initial slope of the (m, — m,)/(m, — m,) versus \/?/h\
curve. The schematic of a typical curve is shown in Figure 1.2.

1.3.4 Temperature variation

The moisture diffusion coefficient D,, is known to depend on the temperature [10]
in the form

Dm = DH exp(_E(l//RuT) (119)

in which D, is a constant, E, the activation energy, R, the gas constant, and
T the temperature measured on the Kelvin scale. Of particular interest are some
typical values of D, and E, for composite laminates and epoxy resins engulfed
in liquids and humid air [11-16]. They are shown respectively in Tables 1.1 and
1.2.

Equation (1.19) implies that log D,, should be a linear function of 1/7. This
relationship is displayed in Figure 1.3 for the T300/5208 laminate [15] in a moisture
environment.

Table 1.1. Constants D, and E, for composite systems in distilled water and saturated salt water [11].

Material D, (< 10 °m’/s) Ey (x 10*KJ/Kgmol)
Distilled Salt Distilled Salt
T300/1034 16.3 5.85 5.16 5.01
AS/3501-5 768.0 53.8 6.00 5.40
T300/5208 132.0 6.23 5.61 4.92




