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Abstract

Motivated by a question of Vincent Lafforgue, we study the Banach spaces X
satisfying the following property: there is a function ¢ - A x () tending to zero with
€ > 0 such that every operator T: Ly — Lo with ||T|| < € that is simultaneously
contractive (i.e. of norm < 1) on L; and on L, must be of norm < Ax(g) on
Ly(X). We show that Ax(e) € O(e*) for some a > 0 iff X is isomorphic to a
quotient of a subspace of an ultraproduct of -Hilbertian spaces for some 6 > 0 (see
Corollary 6.7), where #-Hilbertian is meant in a slightly more general sense than in
our previous paper (1979). Let B,(L2(u)) be the space of all regular operators on
Lay(u). We are able to describe the complex interpolation space

(Br(L2(/1))1 B(L2(ﬂ)))0
We show that T': Ly(p) — La(u) belongs to this space iff T ® idx is bounded on
L,y(X) for any #-Hilbertian space X.
More generally, we are able to describe the spaces

(B(an)a B(epl ))0 or (B(LP())" B(LP1 ))0

for any pair 1 < pg,p;1 < o0 and 0 < 6 < 1. In the same vein, given a locally compact
Abelian group G, let M(G) (resp. PM(G)) be the space of complex measures (resp.
pseudo-measures) on G equipped with the usual norm ||u|a(c) = |1|(G) (resp.

Il ey = sup{la(y)| | v € G}).

We describe similarly the interpolation space (M (G), PM(G))®?. Various extensions
and variants of this result will be given, e.g. to Schur multipliers on B(f;) and to
operator spaces.
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Introduction

This paper is a contribution to the study of the complex interpolation method.
The latter originates in 1927 with the famous Marcel Riesz theorem which says
that, if 1 < pg < p1 < oo, and if (a;;) is a matrix of norm < 1 simultaneously
on ¢, and {7, then it must be also of norm < 1 on ¢} for any py < p < p,
and similarly for operators on L,-spaces. Later on in 1938, Thorin found the most
general form using a complex variable method; see [2] for more on this history.

Then around 1960, J.L. Lions and independently A. Calderéns[12] invented the
complex interpolation method, which may be viewed as a far reaching “abstract”
version of the Riesz-Thorin theorem, see [2, 36]. There the pair (Lp,,Lp,) can
be replaced by a pair (By, B;) of Banach spaces (assumed compatible in a suitable
way). One then defines for any 0 < 6 < 1 the complex interpolation space By =
(Bo, B1)g which appears as a continuous deformation of By into B; when 6 varies
from 0 to 1. In many ways, the unit ball By of the space By looks like the “geometric
mean” of the respective unit balls By and B; of By and Bi, i.e. it seems to be
the multiplicative analogue of the Minkowski sum (1 — 8)By + 6B;. The main
result of this paper relates directly to the sources of interpolation theory: we give
a description of the space By = (By, B1)g when By = B(f;,’“) and B; = B(E;}l), or
more generally for the pair By = B(Ly, (1)), B1 = B(Lp, (1)).

Although our description of the norm of By for these pairs is, admittedly,
rather “abstract” it shows that the problem of calculating By is equivalent to the
determination of a certain class of Banach spaces

(85Q(po), SQ(p1))s

roughly interpolated between the classes SQ(pg) and SQ(p;) where SQ(p) denotes
the class of subspaces of quotients (subquotients in short) of L,-spaces.

When py =1 or = o0, this class SQ(py) is the class of all Banach spaces while
when p; = 2, SQ(p1) is the class of all Hilbert spaces. In that case, the elass
(SQ(po), SQ(p1))e is the class of all the Banach spaces B which can be written
(isometrically) as B = (By, B1)s for some compatible pair (By, B;) with

B; € SQ(p;) (5 =0,1).

We already considered this notion in a previous paper [58]. There we called 6-
Hilbertian the resulting spaces. However, in the present context we need to slightly
extend the notion of #-Hilbertian, so we decided to rename “strictly #-Hilbertian”
the spaces called #-Hilbertian in [58]. In our new notion of “f-Hilbertian” we found
it necessary to use the complex interpolation method for “families” {B, | z € 0D}
defined on the boundary of a complex domain D and not only pairs of Banach
spaces
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This generalization was developed around 1980 in a series of papers mainly by
Coifman, Cwikel, Rochberg, Sagher, Semmes and Weiss (cf. [13, 14, 15, 73, 16]).
There @D can be the unit circle and, restricting to the n-dimensional case for
simplicity, we may take B, = (C™,|| ||,) where {|| |- | z € D} is a measurable
family of norms on C™ (with a suitable nondegeneracy). The interpolated spaces
now consist in a family {B(§) | £ € D} which extends the boundary data {B, |
z € 0D} in a specific way reminiscent of the harmonic extension. When B, = é;(z)
with 1 < p(z) < oo (z € OD) one finds B(§) = € ey Where p(§) is determined by

p(6) = / p(2) " e (d2)

aD

where p¢ is the harmonic (probability) measure of £ € D relative to 9D.

Consider then an n x n matrix a = [a;;], let B, = B(¢},,)) for z € 0D and let
B(€) (€ € D) be the resulting interpolation space.

One of our main results is the equality

(0.1) lallae) = sup{llax: €5 (X) = £ (X)}

where ax is the matrix [a;;] viewed as acting on X" in the natural way and where
the supremum runs over all the n-dimensional Banach spaces X in the class C(&).
The class C(§) consists of all the spaces X which can be written as X = X (&) for
some (compatible) family {X(2) | z € dD} such that X(2) € SQ(p(2)) for all z in
0D and of all ultraproducts of such spaces.

By a sort of “duality,” this also provides us with a characterization of this class
C(&), or more precisely of the class of subspaces of quotients of spaces in C(§): a
Banach space X belongs to the latter class (resp. is C-isomorphic to a space in that
class) iff for any n

(0.2) ! ||SI(1I:<1 llax: €5 (X) = Gy (X) <1 (resp. <C).
aliger>

Consider for example the case when p(z) takes only two values p(z) = 1 and
p(2) = 2 with measure respectively 1 — 6 and 6. Then 8(0) = (B(¢7), B(£3))e
and C(0) is the class of all the spaces which can be written as X (0) for some
boundary data dD > z —— X(z) such that X(z) is Hilbertian on a subset of
normalized Haar measure > 6 (and is Banach on the complement). We call these
spaces 6-Euclidean and we call §-Hilbertian all ultraproducts of 8-Euclidean spaces
of arbitrary dimension.

Actually, our result can be formulated in a more general framework: we give
ourselves classes of Banach spaces {C(z) | z € 8D} with minimal assumptions and
we set by definition

lallgzy = sup [lax: €5y (X) = &5y (X
| B(z) XeC(z)” p(2) p(2) ||

Then (0.1) and (0.2) remain true with C(z) in the place of SQ(p(z)). In particular,
we may now restrict to the case when p(z) = 2 for all z in dD. Consider for
instance the case when C(z) = £% for z in a subset (say an arc) of D of normalized
Haar measure 6 and let C(z) be the class of all n-dimensional Banach spaces on the
complement. Then (0.1) yields a description of the space (By, B1)s when By, B; is
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the following pair of normed spaces consisting of n X n matrices:

lallz, = Illai; 1l 5eey)

lallz, = lllai;]ll 5eg)-
More generally, if By = B(La(u)) and if By is the Banach space B, (La(u)) of all
regular operators T on Ly (u) (i.e. those T' with a kernel (T'(s, t)) such that |T'(s, t)| is
bounded on Ly(u)), then we are able to describe the space (B, (La(1)), B(L2(p)))?.
By [1] this also yields (By, B;)e as the closure of By N B; in (By, B1)°.

The origin of this paper is a question raised by Vincent Lafforgue: what are the
Banach spaces X satisfying the following property: there is a function € - Ax(¢)
tending to zero with € > 0 such that every operator T: Ly — Ly with |T]| < ¢
that is simultaneously contractive (i.e. of norm < 1) on L; and on L., must be of
norm < Ax(g) on Ly(X) ?

We show that Ax(g) € O(¢®) for some a > 0 iff X is isomorphic to a subspace
of a quotient of a #-Hilbertian space for some 6 > 0 (see Corollary 6.7). We also
give a sort of structural, but less satisfactory, characterization of the spaces X such
that Ax(¢) = 0 when € — 0 (see Theorem 9.2). ’

V. Lafforgue’s question is motivated by the (still open) problem whether ex-
panding graphs can be coarsely embedded into uniformly convex Banach spaces; he
observed that such an embedding is impossible into X if Ax(¢) — 0 when ¢ — 0.
See §3 for more on this.

The preceding results all have analogues in the recently developed theory of
operator spaces ([18, 66]). Indeed, the author previously introduced and studied
mainly in [64, 63] all the necessary ingredients, notably complex interpolation and
operator space valued non-commutative L,-spaces. With these tools, it is an easy
task to check the generalized statements, so that we merely review them, giving
only indications of proofs. In addition, in the last section, we include an example
hopefully demonstrating that interpolation of families (i.e. involving more than a
pair) of operator spaces, appears very naturally in harmonic analysis on the free
group.

Let us now describe the contents, section by section. In §1, we review some
background on regular operators. An operator T on L,(u) is called regular if there
is a positive operator S, still bounded on L,(u), such that

Vf e Ly(p) ITf1 < S(I£1)-

The regular norm of T is equal to the infimum of ||S||. These operators can be
characterized in many ways. They play an extremal role in Banach space valued
analysis because they are precisely the operators on L,(u) that extend (with the
same norm) to L, (u; X) for any Banach space X.

In §2 we use the fact that regular operators on L,(u) (1 < p < oo) with regular
norm < 1 are closely related (up to a change of density) to what we call fully
contractive operators, i.e. operators that are of norm < 1 simultaneously on L; and
L.

This allows us to rewrite the definition of A x(¢) in terms of regular operators.

In §4, we describe a certain duality between, on one hand, classes of Banach
spaces, and on the other one, classes of operators on L,. Although these ideas
already appeared (cf. [40, 41, 29, 35]), the viewpoint we emphasize was left sort
of implicit. We hope to stimulate further research on the list of related questions
that we present in this section.
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In §5, we present background on the complex interpolation method for families
(or “fields”) of Banach spaces. This was developed mainly by Coifman, Cwikel,
Rochberg, Sagher, Semmes, and Weiss cf. [13, 14, 15, 16, 73].

In §6, we generalize the notion of §-Hilbertian Banach space from our previous
paper [58]. We first call §-Euclidean any n-dimensional space which can be obtained
as the interpolation space at the center of the unit disc D associated to a family
of n-dimensional spaces {X(z) | 2 € 0D} such that X(z) is Hilbertian for a set
of z with (Lebesgue) measure > 6. Then we call #-Hilbertian all ultraproducts of
#-Euclidean spaces. In our previous definition (now called strictly §-Hilbertian), we
only considered a two-valued family {X(z) | z € 0D}. We are then able to describe
the interpolation space

(Br, B)’

where B, and B denote respectively the regular and the bounded operators on £5.
We then characterize the Banach spaces X such that Ax(e) € O(e®) for some
a > 0 as the subspaces of quotients of #-Hilbertian spaces.

In §7, we briefly compare our notion of #-Hilbertian with the corresponding
“arcwise” one, where the set of z’s for which X (z) is Hilbertian is required to be
an arc.

In §8, we turn to Fourier and Schur multipliers: we can describe analogously the
complex interpolation spaces (By, B;)? when By (resp. B;) is the space of measures
(resp. pseudo-measures) on a locally compact Abelian group G (and similarly on an
amenable group). We also treat the case when By (resp. B;) is the class of bounded
Schur multipliers on B(¢3) (resp. on the Hilbert—-Schmidt class Sz on #¢3). In the
latter case, B; can be identified with the space of bounded functions on N x N.

In §9, we give a characterization of “uniformly curved” spaces, i.e. the Banach
spaces X such that Ax(e) — 0 when € — 0. This appears as a real interpolation
result, but is less satisfactory than in the case Ax(¢) € O(e®) for some « > 0 and
many natural questions remain open.

In §10, we generalize an extension property of regular operators from [61] which
may be of independent interest. See [46] for related questions. This result will
probably be relevant if one tries, in analogy with [41], to characterize the subspaces
or the complemented subspaces of #-Hilbertian spaces. In particular we could not
distinguish any of the two latter classes from that of subquotients of #-Hilbertian
spaces. The paper [21] contains useful related information. We should mention
that an extension property similar to ours appears in [35, 1.3.2].

In §11, we describe the complex interpolation spaces (By, B1)? when By =
B(Lyp, (1)) and By = B(Lyp, (@) with 1 < po,p1 < 0o. Actually, the right framework
seems to be here again the interpolation of families {B, | z € 0D} where B, =
B (Z;(z)). We treat this case and an even more general one related to the “duality”
discussed in §3, see Theorem 11.1 for the most general statement.

In §12 and §13, we turn to the analogues of the preceding results in the operator
space framework. There operators on L,(u) are replaced by mappings acting on
“non-commutative” L,-spaces associated to a trace. The main results are entirely
parallel to the ones obtained in §6 and §11 in the commutative case.

Lastly, in §14, we describe a family of operator spaces closely connected to
various works on the “non-commutative Khintchine inequalities” for homogeneous
polynomials of degree d (see e.g. [54]). Here we specifically need to consider a
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family {X(z) | z € 8D} taking (d + 1)-values but we are able to compute precisely
the interpolation at the center of D (or at any point inside D).
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CHAPTER 1

Preliminaries. Regular operators

Let 1 < p < oo throughout this section. For operators on L, it is well known
that the notions of “regular” and “order bounded” coincide, so we will simply use
the term regular. We refer to [50, 72| for general facts on this. The results of
this section are all essentially well known, we only recall a few short proofs for the
reader’s convenience and to place them in the context that is relevant for us.

1.1. We say that an operator T': L,(u) — L, (v) is regular if there is a constant
C such that for all n and all zy,...,2, in L,(u) we have

Isup [Tzx| [lp < C| sup [zk| |[p-

We denote by ||T||reg the smallest C' for which this holds and by B,.(Ly(u), Ly(v))
(or simply B, (L,()) if 4 = v) the Banach space of all such operators equipped
with the norm || ||reg-

Clearly this definition makes sense more generally for operators 7': A; — Ag
between two Banach lattices A1, As.

1.2. It is known that T': L,(u) = Lp(v) is regular iff T ® idx : Lp(u; X) —
L,(v; X) is bounded for any Banach space X and

(1.1) [T ||reg = =up IT ®idx: Lyp(p; X) = Lyp(v; X)||.

This assertion follows from the fact that any finite dimensional subspace ¥ C X
can be embedded almost isometrically into £7 for some large enough n. See 1.7
below. The preceding definition corresponds to £Z, for all n, or equivalently to
X = Co-

Actually, T: L,(n) — Lp(v) is regular iff there is a constant C such that for
all n and all z1,...,2, in L,(u) we have

1Y 1Tzel o < CI YLkl N,

and the smallest such C is equal to ||T||reg- This follows from the fact that any
finite dimensional space X is almost isometric to a quotient of ¢} for some large
enough n.

1.3. A (bounded) positive (meaning positivity preserving) operator 7' is regular
and ||T'||reg = ||T'||. More precisely, it is a classical fact that T is regular iff there
is a bounded positive operator S: L,(u) — Lp(v) (here 1 < p < oo) such that
|T(z)] < S(|z|) for any z in L,(u). Moreover, there is a smallest S with this
property, denoted by |T|, and we have:

[T leeg = 1 171 []-

7
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In case L,(p) = Lp(v) = £p, the operator T can be described by a matrix T = [t;;].
Then

T| = [[ti;]]-
Similarly, if T is given by a nice kernel (K(s,t)) then |T| corresponds to the kernel

(1K (s, 8)])-

1.4. In this context, although we will not use this, we should probably mention
the following identities (see [58]) that are closely related to Schur’s criterion for
boundedness of a matrix on £, and its (less well known) converse:

(B(£1), B(£a0))e = Br (£, 6)
(B(61), B(co))® = Br(£p, &)

These are isometric isomorphisms with p defined as usual by p~! = (1 — 6).
More explicitly, a matrix b = (b;;) is in the unit ball of B,(¢y) iff there are
matrices b° and b! satisfying

lbi;| < [63;]~°1b;1°
and such that
' 0| <1 and bl < 1.
sup} [bf;| <1 an St;pzil Hl <

The “if” direction boils down to Schur’s well known classical criterion when p = 2
(see also [38]).

1.5. We will now describe the unit ball of the dual of B, (7).

LEMMA 1.1. Consider an n x n matriz ¢ = (p;;). Then

. n n 1/2
(1.2 el - = { (7 1 X i) "}
where the infimum wuns over all z,y in €5 such that
Vi, j lis| < |zl |y;l-

PROOF. Let C be the set of all ¢ for which there are z,y in the unit ball of £3
such that |¢;;| < |z;| |y;|. Clearly we have for all a in B(¢3)

lallz.cez) = Mllass il = sup |3~ ¢isas;
pel

Therefore, to prove the Lemma it suffices to check that C is convex (since the right-
hand side of (1.2) is the gauge of C). This is easy to check: consider ¢, ¢’ in C and
0 < 6 < 1 then assuming

lpij| < lzil ly;| and ;] < |=3] |5
with z,y,z’,y’ all in the Euclidean unit ball, we have by Cauchy-Schwarz
(1 = 0)s; + 05351 < (1 — O)|as|® + 0l25*)/2((1 — O)lw;[* + Oly;|*)'/2,
which shows that (1 — 6)p + ¢’ is in C. a
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Let C be as above. Then ¢ € C iff there are h;, k; in C™ such that ¢;; = (hs, k;)

and
Skl <1, Sl <1

Indeed, if this holds we can write

lpisl < hi(m)] lkj(m)| < [hilleg 1k lez,

from which ¢ € C follows. Conversely, if ¢ € C, we may assume @;; = x;y;7;; with
7] <1, |lzll2 £ 1, |lyll2 < 1. Let (er,) denote the canonical basis of C*. Then,
letting

h; = x;e; and kj =Y; Zm Ymj€m
we obtain the desired representation.
1.6. The predual of B(La (1), L2 (1)) is classically identified with the projective

tensor product Lo(u)®La(y'), ie. the completion of the algebraic tensor product
Lo(u) ® Lo(p') with respect to the norm

ITlIn = inf Y |zm|lym|

where the infimum runs over all representations of T as a sum T = Xz, ® ym
of rank one tensors. Let T'(s,t) = Xz,,(s)ym(t) be the corresponding kernel in
Lo(p x ¢'). An easy verification shows that

IT[ln = inf{[|Al Lo oo 1Bl 22 o2 }

where the infimum runs over all h, k in Ly(¢5) such that T'(s,t) = (h(s), k(t)).
We now describe a predual of B,(Lz(u), L2(1')). For any T in La(u) ® La(u'),
let

(1.3) N, (T) = inf{]|z[|2]|yll2}
where the infimum runs over all z in Ly(u) and all y in Ly(p’) such that

IT(s, )| < 2(s)y(t)
for almost all s,t. Equivalently, we have

(14) N1 = it {|| 327 Al l1sup [k lll2} = inf {1l o) 1Bl ageny

where the infimum runs over all n and all h = (hq,...,hy) k= (k1,...,k,) in (L2)™
such that
(1.5) T(s,t) = Zl hi(s)k;i(t).

Indeed, it is easy to show that the right-hand sides of both (1.3) and (1.4) are
convex functions of T' and moreover (recalling 1.1, 1.2 and 1.3) that for any b in
Br(La(p), L2(4'))
1bllreg = sup{|{b, T)|}

where the supremum runs over T' such that the right-hand side of either (1.3) or
(1.4) is < 1. This implies that (1.3) and (1.4) are equal. Let Lo(u)®,Lo(1') be the
completion of La(u) ® L2(u') with respect to this norm. Then there is an isometric
isomorphism

(La(w)&: L2 (1'))* = Br(La(n), L2 (k"))
associated to the duality pairing

Vb € B, (Lay(u), La(i)) (byz®y) = (b(z),y)
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1.7. More generally, a predual of B,(L,(u),L,(u')) can be obtained as the
completion of L (1) ® Ly(p') for the norm

(1.6) VT € Ly (1) ® Ly(w) N,(T) = inf {“21 ]|, llsup '.‘Ji“lp}

where the supremum runs over all decompositions of the kernel of T as T'(s,t) =
-7 fi(8)gi(t). To verify that (1.6) is indeed a norm, we will first show that (1.6)
coincides with

(1.7) M (T) = inf{||¢]|z,, v+ lInllz, o)}

where the infimum runs over all finite dimensional normed spaces Y and all pairs
(§;m) € Ly (W;Y™) x Lp(p, Y) such that T(s,t) = (£(s),n(t)).

Clearly M,.(T) < N,.(T). Conversely, given Y as in (1.7), for any € > 0 there
is n and an embedding j: Y — €% such that ||y|| < ||7(v)]] < (1 + ¢)||y|| for all y
inY. Let (§,n) be as in (1.7). Let /) = jn € L,(¢2). Note ||7]| < (1 +¢)||n||. Let
g=j*: £} = Y™ be the corresponding surjection. By an elementary lifting, there
is € in Ly (€7) with [[€] < (1+¢)[i¢]| such that £ = gé.

_ We have then T(s,t) = (£(s),n(t)) = (g&(s),n(t)) = (&(s),70(t)) and
I€llz, ey Il eny < (1+€)2€lL, (v lInllL,v)- Thus we conclude that M,(T) <
- N,(T) and hence M,.(T) = N,.(T).

To check that IV,. is a norm, we will prove it for M,.. This is very easy. Consider
Ty, T, with M,(T;) <1, (j =1,2) and let 0 < 0 < 1. We can write

Ti(s,t) = (&(s), m (1))
Ta(s, t) = (&2(s), m2(t))
with (§5,7m;) € Lp(Y;) x Ly (Y;"). Then
(1= 0)Ti(s,t) + 0Tz(s,t) = (£(s), n(t))
where (§,n) € L,(Y) X Ly (Y*) with
Y=Y16,Y, Y'=Y oy Yy
E=((1-0)"P6@6V7e),  n=(1-60)""m@6/y).
We conclude that

My(Th +T2) < Elle,onlmllz, vy < 1.

Now that we know that (1.6) is indeed a norm, it is clear (either by 1.1 or 1.2) that
the completion L,(u)®; Ly (1) of (Lp(p) ® Ly (), Ny) is isometrically a predual
of Br(Lp(u), Ly (1'))-

1.8. We refer e.g. to [59] for more information and references on all this
subsection (see also [18, 66] for the operator space analogue). The original ideas
can be traced back to [23].

An operator v: E — F between Banach spaces is called nuclear if it can be
written as an absolutely convergent series of rank one operators, i.e. there are
z¥ € E*, y, € F with ) ||z%|||lyn]| < oo such that

v(z) =) (T}, 2)yn Vz € E.
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The space of such maps is denoted by N(FE, F). The nuclear norm N (v) is defined

as
N(v) =inf Y |} llllynll

where the infimum runs over all possible such representations of v. Equipped with
this norm, N(F, F) is a Banach space.

If £ and F are finite dimensional, it is well known that we have isometric
identities

B(E,F)*=N(F,E) and N(E,F)* = B(F,FE)
with respect to the duality defined foru: F — Fandv: F — E by
(u,v) = tr(uv).
We will denote by 'y (E, F') the set of operators u: E — F that factorize

through a Hilbert space, i.e. there are bounded operators u;: H — F,us: E— H
such that u = uju;. We equip this space with the norm ~g(.) defined by

Yo (u) = inf{||u1|| [luzl}
where the infimum runs over all such factorizations.

We will denote by v;(.) the norm that is dual to yg(.) in the above duality,
ie. for all v: F — FE we set

vi () = sup{|tr(wv)| | u € Ty (E, F),vyg(u) < 1.}

PRrROPOSITION 1.2. Consider v: {3, — (7.
(i) v (v) < 1 iff there are A, pu in the unit ball of €3 and (a;;) in the unit ball
Of B(f’zl) such that Vij = /\iaijpj.
(ii) N(v) <1 iff there are X',y in the unit ball of €5 and (b;;) in the unit ball
Of B,(ég’) such that Vij = /\:b,]ﬂ;

PROOF. (i) is a classical fact (cf. e.g. [65, Prop. 5.4]). To verify (ii), note
that N(v) = > |v;j|. Assume N(v) = 1. Let then X} = (3 ; |vi;])}/2 and W =
ij

1/2
(Z ]vij|) and b;; = vij(Agu;)’l. We have then (with the convention % =0)

|bij| < [b3;]1/2(b};|*/2
with b = |vy;|(Z; Jvig]) " and bl; = |uys| (S, oy ). Since sup 3=, [b] < 1 and
sup )_; [b};| < 1, by 1.4 we have ||b||reg < 1. 0
i

-

PROPOSITION 1.3. Consider p: €3 — (3.

() llellBeegys < 1 iff there are A, p in the unit ball of 3 and v: € — £,
with vy (v) < 1 such that p;; = \jvijpu; for all i,j.

(i) llellB,ezys < 1 iff there are A, in the unit ball of €3 and v: {f — £,
with ||v|| <1 such that p;; = A\jvijp; for all i, j.

PROOF. (i) If ¢ factors as indicated we have v = vive with vi: H — € and
vy: {7 — H such that |[v1]|||v2]| < 1. Let Dy and D, denote the diagonal operators
with coefficients (A;) and (p;). We have then ¢ = Djvjv2D,,, hence using the
Hilbert-Schmidt norm |- || zs we find that ||¢|| p(ez)- (which is the trace class norm
of ¢) is < ||Dav1||ms||lvaDyullas < 1. Conversely, if the trace class norm of ¢ is < 1,
then for some H Hilbert (actually H = ¢3) we can write ¢ = @12, p2: €3 — H
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and ¢;: H — £5 such that |¢1||gs|lez2||las < 1. Let ve: €f — Handvy: H — €%
be the maps defined by vae; = (p26;)|p2e;[ 7! and vie; = (pfei)|pies]| ™. Note
that ||v1|| = |lv2]| = 1. Let v = vive and A; = ||pfeill, pj = ||@26;||. We have then
[lv]l <1 and @;; = (pe;, ;) = Ajvi;uj, which verifies (i).
(ii) By Lemma 1.1, ||| B, (¢z)- < 1 iff there are A, u in the unit ball of £} and
v: €7 — €3, with ||v]| = sup |vi;| < 1 such that ¢;; = Avijp;. O
i

1.9. In the sequel, we will invoke several times “a measurable selection argu-
ment.” Each time, the following well known fact will be sufficient for our purposes.
Consider a continuous surjection f: K — L from a compact metric space K onto
another one L. Then there is a Borel measurable map g: L — K lifting f, i.e.
such that f o g is the identity on L. This (now folkloric) fact essentially goes back
to von Neumann. The references [33, p. 9] or [76, chap. 5] contain considerably
more sophisticated results.

1.10. Throughout this memoir (at least until we reach §12), given an operator
T: Lp(p) = Lp(v) such that T®idx extends to a bounded operator from L,(u; X)
to L,(v; X), we will denote for short by
Tx: Ly(u; X) — Lp(v; X)

the resulting operator. In §12, this notation will be extended to the non-commuta-
tive setting.



