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Preface

The material in this text was developed for a first-year graduate course
on stochastic process at Berkeley. While some background on probability theory
‘ and some degree of mathematical sophistication are assumed of the student, the
'Book is largely self-contained as to definitions, concepts, and the principa].
results that are used. Mathematical details are sometimes omitted and these
can be found in the references listed at the end of the book.

While the chapters are arranged in their logical order, the core material
begins with Chapter 4. Each of the last four chapters (4-7) deals with a
major topic in applied stochastic process theory, while the first three
chapters deal with mathematical fundamentals. From a pedagogical point of
view, some instructors may well prefer to begin with Chapter 4 and to fill in
the background material as it is needed. Depending on how much of the final
two chapters is included, the topics in this book can be covered in a quarter
(36-40 lecture hours) or a semester (45-60 lecture hours). I have done both
at Berkeley.

A short collection of exercises can be found at the end of the book. It
is hoped that these would serve as prototypes from which additional preblems
could be developed.

A word on notation. For typing ease the exponential function is sometimes
written without raising the exponent, e.g., e-(%)xz. I know of no instance
where this notation is ambiguous.

I am grateful to my former teacher Professor John B. Thomas for
encouraging me to put this material into book form, and for reviewing the
manuscript. "I would also like to thank Ms. Doris Simpson for a skillful job
in preparing the camera copy from which this book was producéd.
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Chapter 1. Event and Probability

1. Introduction

For most people, intuitive notions concerning probabilities are connected
with relative frequencies of occurrence. For example, when we say that in toss-
ing a coin, the probability of its coming up “heaq;”%s 1/2, we usually mean
that in a large number of tosses, about 1/2 of the tosses will come up heads.
Unfortunately, relative  frequency of occurrence has proved to be an unsatis-
factory starting point in defining probabi]iiy. Although there have been
attempts to make frequency of occurrence-part of the axiomatic structure of
probability theory, the currently accepfed formulation is one based on
measure theory due to ko]mogorov. In this formulation frequency of occurrence
is an interpretation for probabitity rather than a definition. This inter-
pretation is justified under’;uitab1e conditions by the law of large numbers.

The starting point cf probability theory is usually taken to be an experi-
ment the outcome of which is not fixed a priori. Some familiar examples
include tossing a die, observation of a noise voltage at a fixed time, the
error in measuring a physical parameter, and the exact touchdown time of an !/
aircraft. Let Q denote the set of all possible outcomes of an experiment. For
example, for the experiment of tossing one die, @ = {1, 2, 3, 4, 5, 6}y while
for the touchdown time of an aircraft, Q@ might be chosen to be 0 < t <o We
note that for a given experiment only one outcome is ever dbserved. Fdr

example, if we toss a die twice, we can consider the first toss as one experi-
ment and the secohd toss as a separate experiment, or better yet, consider the
two tosses together as a single experiment with 36 possible outcomes, each
outcome being a pair_?f numbers (i, j), i, j =1, 2, =+, 6. It is better
because we can then consider concepts that involve both tosses, e.g., 6 on
either throw. In any event, we do not consider the results of the two throws
as different outcomes of the same experiment.

Probability is a nonnegative number assigned-to.certain subsets of .
Thus it is a set function, and we shall denote the probability of a set A by
P(A). Every probability must satisfy the following three axioms.

Axiom 1 P(A) >0, P(Q) =1

Axiom 2 If A and B are disjoint sets, i.e?, if the intersection
A N B is empty, then

(additivity) P(A UB) = P(A) + P(B)

1



2 Chapter 1. Event and Probability

Axiom 3 If A1, Az, +++, is a convergent sequence of sets, then
P(1im An) = 1im P(An)
N N

For experiments with only a finite number of outcomes, the third axiom is
unnecessary. Axiom 3 is known as sequential continuity. In the next section
we explain further the concept of the 1imit of a sequence of sets.

A subset of @ for which a probability is defined is called an event. If
Q2 contains only a finite number of outcomes, or even a countable number of
outcomes, then every subset of Q can be taken as an event. However, if Q is
uncountable, it may not be possible to take all subsets to be events. For
example, if Q@ = [0, 1] and we require that P(interval) = length(interval), then
it is a well-known example in Lebesgue integration theory that there are
subsets of [0, 1] for which P cannot be defined if the three axioms are to be
satisfied. However, for what we do in this book, technicalities such as this
are not of great importance. We need only be aware of the existence of these

problems.

2. Computation of Probabilities

The three axioms ot probability make it immediately clear that the
probabilities of some events can be computed from those of others. We attempt
to develop this idea in this section. This is an important point because in
practice it means that we need only start with the probabilities for a sub-
collection of the events, and compute the rest using the axioms.

Example 2.1 Consider one toss of a single coin. The possible outcomes
are "heads" and "tails." There are four possible events: the empty set @,
{heads}, {tails}, {heads, tails}. Suppose we know that P({heads}) = p. Then

P({heads, tails})

1 by Axiom 1

P({tails}) =1 -p
by Axioms 1 and 2

0

P(empty set)

The procedure of starting with the probabilities of a subcollection of
events and computing the rest is known as extension. If Q is finite, we need
only the first two axioms for extending a probability. First, let A€ denote
the complement of A, i.e., the set of points in Q that are not in A. Then we

must have



Section 2. Computation of Probabilities 3
(2.1) P(AS) = 1 - P(A)

Next, we use the notation A + B to mean A U B when A and B are disjoint, and
we use the notation A - B to mean A U B® when B is contained in A. Axiom 2

can be reexpressed as

(2.2) P(A + B) = P(A) + P(B)

which in turn implies that

(2.3) P(A - B) = P(A) - P(B)

because B + (A - B) = A.
Using the notation developed above, we can write for two arbitrary sets
A and B

(2.4) AUB=(A-ANB)+ANB+ (B-ANB)

Figure 1.1 makes this expression obvious.

A-ANB

B-ANB ANB
Figure 1.1

Therefore, the probability of A UB is given by

P(A) - P(ANB) + P(ANB) + P(B) - P(ANB)

(2.5) P(A UB)

P(A) + P(B) - P(A N B)

Suppose that we start with a collection S of events such that S is
closed under intersection; i.e., whenever A and B are sets in S, then A N B is
also in 8. If we know the probability P(A) for every set A in S, then by
repeated applications of (2.1) and (2.5) we can determine the probability of
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every set that can be obtained from sets in S by a finite series of unions,
intersections, and complementations. The collection of all such sets will be
denoted by B(S). A collection of sets, such as B(S), closed under finite boolean
set operations is known as an algebra.

Example 2.2 Let the experiment be the toss of a die so that
2=1{1, 2, 3,4, 5, 6}. Let A0 = f be the empty set and let A], A2, v, A6
be the six sets, eqch containing just a single number. The collection
S = {AO, A
between any two A's is empty. For this case B(S) is the collection of all

10 AZ’ sy A6} is closed under intersection because the intersection

possible subsets of Q. There are 26 = 64 such subsets, because each subset is
uniquely identified by asking whether it contains the number i for

i=1, 2, *++, 6. For this problem if we know the probabilities of any five of
5ix sets A], AZ’ cee, A6’ we can determine the probability of every subset A of
Q, which is just the sum of the probabilities of the numbers i =1, 2, +«+, 6
contained in A.

Example 2.3 let @ = [0, 1). Let S be the collection of all semiopen
intervals of the form [a, b), 0 <a <b < 1. We take [a, a) to be the empty
set. Let the probability of [a, b) be given by

P([a, b)) =b - a

The collection S is closed under intersection.* It can be shown that B(S) is
the collection of all sets of the form

where the intervals [ai, bi)’ i=1,2, **+, n, are disjoint and n can be any
finite integer. Clearly, for such an event we have

The extension of a probability P from S to B(S) makes use of only (2.1)
and (2.5), which in turn are derived using only the first two axioms of
probability. We now make use of the third axiom,"seguential continuity.
First, we need to define the concept of convergence for a sequence of sets.
By a sequence of sets we mean a countable collection of sets, i.e., a



Section 2. Computation of Probabilities

collection of sets {Ai’ i=1,2, ---} that can be indexed by the positive
n
2 An; then the union U Ak must be

integers. Suppose that for every n, A
: : k=1

n+l
equal to An. Therefore, it is natural to define

limA = U A
n

n-o k=1 k

Similarly, if An+1 EAAn for every n, then we define

T1im An =N Ai
n-o k=1

For a general sequence {Ak, k=1, 2, ««+} we set

B, = U A
n k>n k
C,= N A
n k>n k

It is always true that Bn+] C Bn and Cn+] 2 Cn for every n. We say that the
sequence of sets {A } converges if 1im C = Tim B, i.e., if
n-co n->c
(2.6) LN A =N U A
n=1 k>n n=1 k>n

and we take this common 1imit to be Tim A . Axiom 3 of probability now

n-e

reads: If {Ak} is a sequence of sets such that (2.6) holds, then

P(1im An) = liz P(An)

n-<e

Example 2.4 For the case considered in Example 2.3, we have

[a, b] = : [a, b + 1/n)
s

Therefore,
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P([a, b]) = 1im P([a, b + 1/n))

n->co

lim(b+1/n-a) =b-a

n+

which shows that [a, b] and [a, b) must have the same probability.

A probability P is a set function, and its natural domain of definition is a
collection of sets that is closed under all finite boolean set operations and
sequential 1imits, or equivalently all countable set operations. Such a collection,
which we usually denote by A, is known as a g-algebra. Axiom 3 requires P to be
continuous relative to sequential limits. The triplet (Q,A,P) is known as a
probability space.

For a given collection S, there is a smallest o-algebra that contains S and
it is known as the o-algebra generated by S.

Example 2.5 For the S defined in Example 2.3 it is easy to show that
every subinterval of [0, 1), closed or open at either end, is in A(S), and
P(interval) = length of the interval. For instance, [a, b] = lim [a, b + 1/n)

in the sense of sequential limit of sets. Therefore, Mreee
P([a, b]) = 1imP(b-a+1/n) =b - a
n-»co
Example 2.6 Consider an experiment with an infinite number of coin

tosses. We can take Q2 to be the set of all infinite sequences of 1's and 0's,
‘with 1 standing for "heads" and 0 for "tails." Hence each point w in Q has
the form

w = (m], Wps W3, see), wy = 0, 1
If we want every subset of Q to be an event, we can begin with a collection S
defined as follows. S contains every set of w's that is specified by fixing
a finite number of wi's. For example, "the set of all w's such that
wy = 15 wy = 0, we = 1, Wy3g = 0" is cne such set. We can also defcribe S
in another way. Let
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Then, A? is clearly the set {w : w; = 0}. Every set in S js the intersection
of a finite number of Ai‘s and A?'s. For example, the set {w : wy = 1,
wy = 0, wyg = 1, wyge = 0} is Ay nA§ N A N A‘1:36. If the coin is "fair,"
then we take for every i
5| = l: c
P(Ai) =5 P(Ai)
and this is our definition for "fair." If the tosses are "independent," then
for every set A in S we take P(A) to be the product of the probabilities of the
Ai's and Ag's making up A. For example,

¢ c _ c c

P(A; N A7 N Ay N Ay3e) = P(APAIP(R, 6)P(Ay36)
This provides a definition for "independent" tosses. Thus, for independent
tosses of a fair coin, for each A in S, P(A) is 1/2", where n is the number of

wi's that are fixed in A.

3. Independent and Conditional Probability

Let A be an event with P(A) > 0. For any event B we can define the
conditional probability given A by

P(ANB
P(A

(3.1) P(B/A) =
The interpretation of P(B/A) is the likelihood that the actual outcome will
be in B given the information that the outcome will be in A. We say that two
events A and B are independent if

(3.2) P(A N B) = P(A)P(B)

This suggestive terminology comes from the fact that if A and B are independent
and P(A) > 0, then the conditional probability P(B/A) is just P(B). In other
words, given the information that the outcome will be in A does not change the
probability of the event B.

A finite collection {Ai’ i=1,2, *=+, n} of events is said to be an

independent collaction if every finite subcollection {Ak]’ Ak s vee, Ak } has
’ 2 m

the property
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=3

’ m
(3.3) P(NA) =

P(A, )
LT S

1 J

An arbitrary collection of events, finite, countable, or uncountable, is said
to be independent if every finite subcollection is independent. Events in an
independent collection are said to be mutually independent, or simply

independent.

Independent sequences (i.e., countable families) of events are of special
interest. For example, they lead to a simple result on the interpretation of
probability as relative frequency. Suppose that {A], AZ’ +++} is an
independent sequence of events such that P(Ai) = p is the same for each Ai'
Then the number p can be obtained as follows: Once the actual outcome w of the
random experiment is observed, we can determine the number

nN(w) = pumber of Ai's containing w among A], A2, cee, AN

The relative frequency is then given by

ny(w)
(3°4) N = PN(w)

It can be shown (cf. Section 3.2) that for every e > 0, the event
W [Bylw) - pl > &)

has a probability less than or equal to 1/4Ne2 which goes to zero as N » =.
This is one of the simplest versions of the law of large numbers, and can be
interpreted as saying that if N is large, then most of the outcomes will yield
a relative frequency close to p. For example, given the actual outcome, say
wgs if we compute the relative frequency ﬁN(wO) for N = 104, then there is a
better than 99% chance that SN(wO) is within 0.5% of the actual probability p.
Note, once again, that our,premise is always that no more than one outcome is
ever observed in a random experiment. The concept of relative frequency is
associated with a sequence of events all having the same probability, not with
a single event. As in Example 2.6, consider a repeated coin-tossing experiment
- where an outcome is an infinite sequence of heads and tails. The event A, is
equal to {all outcomes "coming up heads" on the ith toss} for i =1, 2, «--.
Since {Ai} is an independent sequence of events with P(Ai) = 1/2 for every i,
almost every outcome will have an equal number of heads and tails in the sense
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of relative frequency. Intuitively, we believe this to be true if the coin is

"fair" and the tosses are "independent." Indeed, the assumption that {Ai} are

independent and equally probable provides a precise definition for "fair coin"
and "independent" toss.



Chapter 2. Random Variables

1. Definition and Distribution Function

In practical situations we are usually more interested in a real number
that depends on the outcomes rather than on the outcomes themselves. Of
course, a real number that depends on the outcomes w is in fact a real-valued
function of w. ’

Definition A real random variable is a real-valued function X(w), w € Q,

such that for every real number a, the set {w : X(w) < a} is an event.

The requirement that {w : X(w) < a} be an event for every a is imposed in
order that we can begin to discuss probability in connection with X.

The probability of {w : X(w) < a} defines a nonnegative-valued function
Px(a), -» < a < o, This function PX is called the probability distribution
function of the random variable X. It has two important properties:

(1) Py is a nondecreasing function, with Tim Px(a) =1 and
3o
Tim Px(a) = 0.

a-—oo
(2) Py is left-continuous, i.e., 1lim Px(a -€) = Px(a).
e+0
We should note that left (rather than right) continuity is in consequence of
the strict inequality X < a in the definition of PX. If we had used < instead
~of < in defining PX, it would be right-continuous. The literature is not

standard on this point. It is a matter of taste whether one adopts < or < in
defining PX' In this book we choose < throughout. The nondecreasing property
follows from the fact that a probability is additive and nonnegative, because

.

Px(a +¢e) = P({w : X(w) <a+e€})

= P({w : X(w) <a} + {w:a<Xw) <a+e})

Px(a) +P({w : a < X(w) <a+el)

The left-continuity follows from sequential continuity of probability, because

iX(w)(ﬂ}—-—-’O

Px(a)-Px(a-]ﬁ)=P({m:a-% —

in a very real sense any probabilistic question concerning X can be
" answered directly once we know its probability distribution function PX. The

10



Section 1. Definition and Distribution Function 11

distribution function PX‘ being a real-valued function of a real variable, is
much simpler to deal with than P, which is a function defined on sets. In
practice, the situation is made even simplér by the fact that PX is frequently
one of two forms: ‘ &

(1) PX is constant except for jumps at a discrete sequence of points

sese
. e

: X]s Xp»
(2) PX is of the form

a
Pyta) = [ pylx).ox

In the first case we say that PX is a discrete distribution and interpret the
situation to mean that X can only take on the values X1s Xgs ®°* with nonzero
probability. In the second case PX is said to be absotfutely continuous and Fhe
integrand Px is called the probability density function. If Py is continuous

at a, then of course we have
py(a) = % Py(a)

Probability density functions are nonnegative and j px(x) dx .is always equal

to 1. Although Py is not a probability, we can interpret px(x) dx to be the
probability of the event {w : x < X(w) < x + dx}, so that p(x) is probability
per unit interval, hence the name "density." . ‘

Example 1.1 Consider the repeated coin-tossing experiment described in
Example 1.2.6. Let X(w)-be the number of 1's among the first N components of
w. X is a random variable taking values 0, 1, 2, <+, N. It can be shown that

P({w:X(w)=k})=]—N(E)

2

.1 N!
"N KN - KT

Example 1.2 Let @ = [0, 1) and

P(interval) = length of interval

as described in Example 1.2.5. Let X(w) = w’, 0 <w < 1. It is clear that X



