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PREFACE

This little volume is an outgrowth of a series of lectures given by the
author in a summer institute for high school teachers of mathematics.
The purpose of the course was to improve the participants’ understanding
of algebraic structure and to acquaint them with some of the basic results
of abstract algebra through a formal investigation of various mathematical
systems.

In putting these lectures into textbook form, our aim has been to give
a presentation which is logically developed, precise, and in keeping with
the spirit of the times. Thus a constant level of rigor has been maintained
throughout with proofs given in full detail, except for those which parallel
proofs given previously. The reader will also find that the text is essen-
tially self-contained. A first chapter on sets and functions is being included
to serve as background and to introduce some of the terminology and
notations used subsequently. Numerous exercises of varying degree of
difficulty are to be found at the end of each section.

It is hoped that the material encountered here will be adaptable to a
variety of teaching situations and prove useful not only to the mathematics
major but to any adequately prepared student. Indeed, to some extent
this has already been the case, for certain mimeographed portions of this
text have been successfully employed in a terminal course for liberal arts
freshmen. The entire volume would be quite appropriate for a beginning
one-semester course in modern algebra or for a reading course in which the
student could master the material through independent study.

Many important topics vie for inclusion in a volume of this size, and
some choice is obviously imperative. To this end, we merely followed our
own taste, condensing or omitting altogether certain of the concepts found
in the usual first course in modern algebra. Despite these omissions there
remains a broad foundation upon which the reader can build.

New Haven, Conn. D. M. B.
April 1965
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Chapter 1

PRELIMINARY NOTIONS

1-1. THE ALGEBRA OF SETS

The present chapter establishes some of the notations and terminology
used throughout the text. It also serves as a brief introduction to the
algebras of sets and functions. Inasmuch as this material is intended
primarily for background purposes, the reader may prefer to begin with
Chapter 2.

The term “set” is intuitively understood to mean a collection of objects
having some common characteristic. The objects that make up a given
set are called its elements or members. Sets will generally be designated by
capital letters and their elements by small letters. In particular, we shall
employ the following notations: Z is the set of integers, Q the set of rational
numbers, and R’ the set of real numbers. The symbols Z, @, and R
will stand for the positive elements of these sets.

If z is an element of the set A, it is customary to use the notation z € 4
and to read the symbol € as “belongs to.” On the other hand, when z
fails to be an element of the set A, we denote this by writing z & A.

There are two common methods of specifying a particular set. First,
we may list all of its elements within braces, as with the set {—1, 0, 1, 2},
or merely list some of its elements and use three dots to indicate the fact
that certain elements have been omitted, as with the set {1, 2, 3,4, .. .}.
When such a listing is not practical, we may instead indicate a character-
istic property whereby we can determine whether or not a given object
is an element of the set. More specifically, if P(z) is a statement concerning
z, then the set of all elements = for which the statement P(z) is true is
denoted by

{z | P(2)}.
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For example, we might have {r |z is an odd integer greater than 21}.
Clearly, certain sets may be described both ways:

{0,1} = x|z €Z and 2% = z}.

It is customary, however, to depart slightly from this notation and write
{x € A | P(x)} instead of {x |z € 4 and P(z)}.

DEFINITION 1-1. Two sets A and B are said to be equal,
written A = B, if and only if every element of A is an element
of B and every element of B is an element of A. Thatis, A = B
provided A and B have the same elements.

Thus a set is completely determined by its elements. For instance,
{1,2,3} = {3,1,2,2},

since each set contains only the integers 1, 2, and 3. Indeed, the order in
which the elements are listed in a set is immaterial, and repetition conveys
no additional information about the set.

An empty set or null set, represented by the symbol §), is any set containing
no elements. For instance,

0= {xec R 22 <0} or (= {z|x # x}.

Any two empty sets are equal, for in a trivial sense they both contain the
same elements (namely, none). In effect, then, there is just one empty
set, so that we are free to speak of “the empty set (.”

The set whose only member is the element x is called singleton x and
denoted by {z}:

&} = Wyly = .
In particular, {0} = @ since 0 € {0}.

DEFINITION 1-2. The set A is a subset of, or is contained in
the set B, indicated by writing A C B, if every element of A
is also an element of B.

Our notation is designed to include the possibility that A = B. When-
ever A € Bbut A # B, we will write A C B and say that A is a proper
subset of B.

It will be convenient to regard all sets under consideration as being
subsets of some master set U, called the unwerse (universal set, ground
set). While the universe may be different in different contexts, it will
usually be fixed throughout any given discussion.
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There are several immediate consequences of the definition of set
inclusion.

THEOREM 1-1. If A, B, and C are subsets of some universe
U, then:

(a) ACA,0c A, ACU.

(b) A c@if and only if A = 0.

(¢) {x} < A if and only if x € A; that is, each element of 4
determines a subset of A.

(d) If A cBand BcCC,then A cC.

() AcBand BC Aifandonlyif A = B.

Observe that the result § < A follows from the logical principle that a
false hypothesis implies any conclusion whatsoever. Thus, the statement,
“if x € (), then x € A,” is true since z € () is always false.

The last assertion of Theorem 1-1 indicates that a proof of the equality
of two specified sets A and B is generally presented in two parts. One part
demonstrates that if x € A, then € B; the other part demonstrates that
if € B, thenz € A. An illustration of such a proof will be given later.

We now consider several important ways in which sets may be combined
with one another. If A and B are subsets of some universe U, the opera-
tions of union, intersection, and difference are defined as follows.

DEFINITION 1-3. The union of A and B, denoted by A U B,
is the subset of U defined by

AUB= {z|zx€ A or ze€ B}.

The <ntersection of A and B, denoted by A N B, is the subset
of U defined by

ANB= {zx|x€e A and z € B}.

The difference of A and B (sometimes called the relative comple-
ment of B in A), denoted by A — B, is the subset of U defined
by

A—B={z|lz€ A but z & B}.

In the definition of union, the word “or” is used in the “and/or” sense.
Thus the statement, “c € A or x € B” includes the case where z is in both
A and B.

The particular difference U — B is called the (absolute) complement of
B and designated simply by —B. If A and B are two nonempty sets whose
intersection is empty, that is, A N B = §, then they are said to be disjoint.
We shall illustrate these concepts with an example.
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EXAMPLE 1-1. Let the universebe U = {0, 1, 2, 3,4, 5,6}, A = {1, 2, 4},
and B = {2,3,5}. Then AUB = {1,2,3,4,5}, AnB= {2},
A — B = {1,4}, and B— A = {3,5}. Also, —4 = {0, 3,5, 6},
—B = {0,1,4,6}. Observe that A — B and B — A are unequal and
disjoint.

In the following theorem are listed some simple consequences of the
definitions of union, intersection, and complementation.

THEOREM 1-2. If A, B, and C are subsets of some universe
U, then:

(@ AUA=A,ANnA= A4,

(b) AUB=BUA,ANB=Bn 4;

() AUBUC)=(AUB)UC,
ANBNC) = (4nB)NC;

@d AU(BNC)=(AUB) N (4AUO),
ANBUC) = (ANnB)U(4nC);

) Aud= A, ANnO=0;

) AUU=UANU = 4;

(8 Au(—4)=U,ANn(—4) =0

We shall verify the first equality of (d), since its proof illustrates a tech-
nique mentioned previously. Suppose that x € A U (B N C). Then
eitherx € A orz € BN C. Now, if z € 4, then clearly bothz € A UB
and z € 4 UC, sothat € (A U B) N (4 UC). On the other hand, if
z € BN C, then z € B and therefore + € A U B; also z € C and
therefore x € A U C. The two conditions together imply

xe(AUB)n(AuUQ0).
This establishes the inclusion
AUBNC)c(AuB)nNn(AuO0).

Conversely, suppose z € (A UB) N (A UC). Then both x € A UB
and x € A UC. Since z € A U B, either z € A or z € B; at the same
time, sincex € A U C, either x € 4 or z € C. Together, these conditions
mean that t € 4 orx € BN C; that is, z € A U (B N C). This proves
the opposite inclusion

AuB)Nn(AuC)cAuBnl).

By Part (e) of Theorem 1-1, the two inclusions are sufficient to establish
the equality

AUuBnC)=AUB)Nn(AuO0).
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The next theorem relates the operation of complementation to the other
operations of set theory.

THEOREM 1-3. Let A and B be subsets of the universe U.
Then

(a) —(A U B) = (—A4) n (—B);
(b) —(A N B) = (—4) U (—B);
(c) if A € B, then (—B) < (—A);
d —(—=4)=4,-0=U0,-U=09.

The first two parts of the above theorem are commonly known as
DeMorgan’s rules.

One final comment on set theory. It is both desirable and possible to
extend our definitions of union and intersection from two sets to any num-
ber of sets. Suppose to this end that @ is a nonempty collection of subsets
of the universe U. The union and intersection of this arbitrary collection
are defined by

U@ = {z|z € A for some set A € G},
Na = {x|z € A for every set 4 € @}.

For instance, if I, = {x € Rf| —1/n < 2 < 1/n} forn = 1,2,...and
@ is the collection of all the I,, then )

vua={zeR|-1<2<1, na= {0}.

PROBLEMS

In the following exercises A, B, and C are subsets of some universe U.

1. Prove that AN B< A U B.
2. Suppose A C B. Show that
(a) AnCcBNC (b)) AuCcBUC
3. Prove that A — B = A N (—B), and use this result to verify each of the
following identities:
(@ A—p=4,0—A=0A—A=9
(b)yA—B=4—(ANB)=(AUB) —B
(@ (A—BNB—4) =9
4. Simplify the following expressions to one of the symbols A, B, A U B, A N B,
A — B.
() An (4U B) (b) 4 — (A — B) (© —((A N B) U (—4))
5. Provethat AN (BUC) = (ANB)U (A4NC).
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6. Establish the following results on differences:
(a) (A—B)—C=A4— BUO
) A—B—C)=A—BUMANO
() AUB—C) =(AUB) — (C— 4)
dANB—C) =((ANB) —(ANC0)

7. The notion of set inclusion may be expressed either in terms of union or
intersection. To see this, prove that
(a) ACBifandonlyif AUB = B,
(b) AC Bifandonlyif A N B = A.

1-2. FUNCTIONS

From our definition of set equality, {a,b} = {b, a}, since both sets
contain the same two elements @ and b. That is, no preference is given
to one element over the other. When we wish to distinguish one of these
elements as being the first, say @, we write (a, b) and call this an ordered
pair.

It is possible to give a purely set-theoretic definition of the notion of
ordered pair as follows:

DEFINITION 1-4. The ordered pair of elements a and b, with
first component a and second component b, denoted by (a, b),
is the set

(a,b) = {{a; b}; {a’}}

Note that, according to this definition, @ and b are not elements of
(a, b) but rather components. The actual elements of the set (a, b) are
{a, b}, the unordered pair involved, and {a}, that member of the unordered
pair which has been selected to be “first.” Clearly this agrees with our
intuition that an ordered pair should be an entity representing two elements
in a given order.

For a 5 b, the sets {{a, b}, {a} } and {{b, a}, {b}} are unequal, having
different elements, so that (a,b) = (b, a). Hence, if a and b are distinct,
there are two distinct ordered pairs whose components are a and b: namely,
the pairs (e, b) and (b, a). Ordered pairs thus provide a way of handling
two things as one while losing track of neither. We emphasize again that
there is just one set whose elements are @ and b, for {a, b} = {b,a}. As
a consequence of Definition 1-4, it can be shown that

(a,b) = (c, d) if and only if a=c¢b=d.
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DEFINITION 1-5. The Cartesian product of two nonempty
sets A and B, designated by A X B, is the set

AXB= {(a,b)|]lae 4 and b e B}.

Whenever we employ the Cartesian product notation, it will be with
the understanding that the sets involved are nonempty, even though this
may not be explicitly stated at the time. Observe that if the set A contains
n elements and B contains m elements, then A X B has nm elements,
which accounts for the use of the word “product” in Cartesian product.

EXAMPLE 1-2. Let A = {—1,0,1} and B = {0,2}. Then

A X B = {(_17 0)’ (_17 2)7 (Oy 0)7 (0: 2)1 (ly 0)7 (17 2)}
while

BX A= {(07 —1), (0, O)J (0")/ €2, _{): 2,0, (2, 1)}

Clearly the sets A X B # B X A. TH general, AgqK B = B X A if and
only if A = B.

We avoid the traditional view of a functionikasa Tufe of correspondence
and instead give the following definithan In' terms of ordered pairs.

DEFINITION 1-6. A function (or mapping) f is a set of
ordered pairs such that no two distinet pairs have the same first
component. Thus (z, y;) € f and (z, y2) € f implies y; = ys,.

The collection of all first components of a function f is called the domain
of the function and is denoted by Dy, while the collection of all second
components is called the range of the function and is denoted by R;. In
terms of set notation,

Dy = {z| (z,y) € f for some y},
Ry = {y]| (z,y) € f for some z}.

If f is a function and (z, y) € f, then y is called the functional value or
image of f at x and is denoted by f(z). That is, the symbol f(x) represents
the unique second component of that ordered pair of f in which x is the
first component.

EXAMPLE 1-3. If the function f is the finite set of ordered pairs
f = {(_1; 0)! (07 0)7 (1} 2)7 (2) 1)})

Df = {_1707 172}) Rf = {O: 1, 2}

then

and we write f(—1) = 0, f(0) = 0, f(1) = 2 and f(2) = 1.
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Quite often we describe a function by giving a formula for its ordered
pairs. For instance, f = {(z,2% 4+ 2) |z € R*}. Using the functional
value notation, we would then write

f(z)y =224+2 for zeR.

DEFINITION 1-7. If fC X X Y, so that D; € X and
R; C Y, then f is referred to as a function from X into Y. In
particular, if D; = X, we will employ the notation

i X—>Y.

The function f is said to be onto Y, or an onto function, whenever f is a
function from X into Y and Ry = Y. Thus f is onto Y if and only if for
each y € Y there exists some z € Dy with (z,y) € f, so that y = f(x).

Since functions are sets, we have a ready-made definition of equality
of functions: two functions f and g are equal if and only if they have the
same members. Accordingly, f = ¢ if and only if Dy = D, and f(z) =
g(x) for each element z in their common domain.

Suppose that f and g are two specific functions. The following formulas
define functions f + g, f — g, f - g and f/g by specifying the value of these
functions at each point of their domain:

(f+ 9@ = f@) + g(),
(f— 9@ =f@ — 9@, where  x € Dy N D,,
(/- 9)(2) = f(x)g(2),
(f/9) () = f(x)/g(x),
where z e (DynD,) — {xeD,|glx) = 0}.
We term f+ ¢, f — ¢, f+ g and f/g, the sum, difference, product, and
quotient of f and g respectively. Clearly the definitions of these functions

make sense only when R, and R, are subsets of systems in which addition,
subtraction, multiplication, and division are permissible.

EXAMPLE 1-4. Suppose f = {(z,v/4 —22)| —2 <2< 2} and g =
{(z,2/x) | R* — {0}}, so that f(z) = v/ — 22, g(z) = 2/2. Then for
z € DN D, = D — {0},
(+ 9@ =vVi—a+2,
(f— @) = vi—a — 2,
(- 9)@) = (Vi zZ) 2

(Foa) = = = VT =2,
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DEFINITION 1-8. The composition of two functions f and g,
denoted by f o g, is the function

feg = {(z,y) | for somez, (z,2) €g and (z9) €S}
Written in terms of functional values, we have

(fo9)@) = f(gx)), where z€ D, and g¢(z) € Dy.

This last notation serves to explain the order of symbols in fog; g is
written directly beside z, since the functional value g(x) is obtained first.
It is apparent from the definition that, so long as R, N Dy = @, fo g is
meaningful. Also, Dy., € D, and Ry., S Ry.

EXAMPLE 1-5. Let

f={@=+v2) |z e Rz >0}
and
g = {(z,2z + 3) |z € R},

so that f(z) = V7, g(z) = 2z + 3. Then,
(feg)@) = f(g(x)) = f2x + 3) = V2z + 3,

where
Dsy = {x €D, |g(x) € Ds} = {x € R*|22+ 3 € Dy}
= {z|2z 4+ 3 > 0}.
On the other hand,

@°N@ = g(f@) = 9(v/2) = 2vz +3,
where
Dys = {z€Ds|f(@) €D} = {z> 0|z R}
= {z|z > 0}.

One observes that f o g is different from g o f; indeed, rarely does it happen
that fog = gof.

The next theorem concerns some of the basic properties of the operation
of functional composition. Its proof is an exercise in the use of the defini-
tions of this section.

THEOREM 1-4. If f, g, and h are functions for which the
following operations are defined, then

(1) (foeg)oh=1Ffo(goh),
@ F+@eh=(h)+(goh),
@) (frg)eh=(foh)-(goh).
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Proof. We establish here only property (3). The other parts of the theorem
are obtained in a similar fashion and so are left as an exercise. Observe
first that

D(j.g9on = {x € Dy | h(z) € Dy.g}
= {x € Dv| M(z) € Dy N Dy}
= {x € Dy | h(z) € Ds} N {x € Dy | h(z) € Dy}
= Dsen N Dgor = D sohy-(gohy-

Now, for z € D ;..n, we have

[(f-9) e B@@) = (f-9)(h(z)) = f(h(x)) - g(h(x))
= (fel)(2) - (g° M) ()
= [(foh) - (g°W](2),

which, according to the definition of equality of functions, shows that
(f-g)eh=(foh): (g°h).

DEFINITION 1-9. A function f is termed one-to-one if and
only if x;, zy € Dy, with x; % xo, implies f(z;) # f(z2). That
is, distinct elements in the domain have distinct functional
values.

When establishing one-to-oneness, it will often prove to be more con-
venient to use the contrapositive of Definition 1-9:

(@) = f(z2) implies T = 2.

In terms of ordered pairs, a function f is one-to-one if and only if no two
distinet ordered pairs of f have the same second component. Thus the
collection of ordered pairs obtained by interchanging the components of
the pairs of f also results in a function. This observation indicates the
importance of such functions.

More specifically, the tnverse of a one-to-one function f, symbolized by
71, is the set of ordered pairs

F7l= {2 | =y e}
The function f ! has the properties

(f7leN)@) =2 for =z€Dy,
(fef™H) =y for yeDm =R,

so that f~! may be considered the inverse of f with respect to composition.



