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Although the basic principles of Physical
Pharmacy have remained essentially un-
changed through the years, advances have
occurred in the pharmaceutical sciences
since the publication of the first edition in
1960. Typical are the applications of kinetic
principles to biopharmaceutics, dissolution
rate and emulsion breakdown. The solution
of these problems has been assisted greatly
by the analog computer. Phase diagrams
and the thermodynamics of phase equilibria
are now being used by the product devel-
opment pharmacist in the design and man-
ufacture of stable emulsions and solubilized
products. A new graphical treatment of
ionic equilibria has permitted the study of
complex mixtures of ionic species in phar-
maceutical solutions. And the steady de-
velopment of quantum chemistry and com-
puter science has provided new tools for
the study of structure-activity relations and
is beginning to throw some light on the
mysteries of drug-receptor interactions. At
the same time, greater utilization of basic
principles has taken place in the areas of
micromeritics and rheology, and suspen-
sions and emulsions are now being studied

in quantitative, rather than qualitative,

terms.

The second edition of Physical Pharmacy
takes note of these advances and presents
new material which is designed to keep the

Preface

student, teacher, and research pharmacist
abreast of the burgeoning specialties in
pharmaceutics and physical medicinal
chemistry.

The authors are indebted to several spe-
cialists in various fields of science and
mathematics who prepared chapters or sec-
tions of chapters. Dr. Paul Niebergall,
recognized for his treatment of ionic equi-
libria, responded graciously to our call for a
contribution on the new approach to Ionic
Equilibria. Dr. Ronald Wiegand, an estab-
lished expert in pharmacokinetics, prepared
the section of the kinetics chapter dealing
with the important subject of biopharma-
ceutics. The original draft of the chapter on
computers was modified and improved by
the joint efforts of Mrs. Nancy B. Pierce,
Mr. Walter Witschey, Mr. Michael Mul-
shine, Mr. William Kaplan, Dr. James
Zimmerman, and was reviewed by Mr. Paul
Sanders and Dr. Robert Brusenback. Dr.
Alexander Chun prepared most of the illus-
trations, as he had done for the first edition.
His careful attention to detail and advice
on text changes as well as illustrations have
helped greatly to make this a better book.
Mr. Antino Wood helped to prepare some
of the illustrations.

The list of books included as an appen-
dix was revised with the assistance of
Mrs. Theodora Andrews and Mr. Seymour
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Zelmanoff. Mr. Zelmanoff also helped in
checking illustrations and references and in
reading proof.

Many friends in pharmacy have sent sug-
gestions for improvements. We are grateful
to them and to our colleagues at Purdue
University, the Medical College of the Vir-

ginia Commonwealth University, Temple
University and the University of Connect-
icut for their advice and assistance. Mr. John
Spahr, Mr. Martin Dallago and Mr. Thomas
Colaiezzi of Lea & Febiger have been most
sympathetic and helpful during the revi-
sion of the book.

ALFRED N. MARTIN
Philadelphia, Pa.

JaAMEsS SwARBRICK

Storrs, Conn.

ARTHUR CAMMARATA
Philadelphia, Pa.
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CHAPTER

INTRODUCTION

The pharmacist today, more than ever be-
fore, is called upon to demonstrate a sound
knowledge of pharmacology, organic chem-
istry, and an intelligent understanding of
the physical and chemical properties of the
new medicinal products which he prepares
and dispenses.

Whether engaged in research, teaching,
manufacturing, retail pharmacy or any of
the allied branches of his profession, the
pharmacist must recognize the need for bor-
rowing heavily from the basic sciences. This
stems from the fact that pharmacy is an
applied science, composed of principles and
methods that have been culled from the
other disciplines. The pharmacist who is en-
gaged in advanced studies must work at the
boundary between the various sciences, and
he must keep abreast of advances in the
physical, chemical and biological fields if he
is to understand and contribute to the rapid
developments in his own profession.

Pharmacy, like many other applied
sciences, has passed through a descriptive
and an empirical era and is now entering the
quantitative and theoretical stage.

The scientific principles of pharmacy are
not so complex as some would believe, and
certainly they are not beyond the under-
standing of the well-educated pharmacist of
today. In the following pages the reader will
be directed through fundamental theory and
experimental findings to practical conclu-
sions in a manner which should be followed
easily by the average upperclass pharmacy
student.

The name physical or theoretical phar-
macy has been associated with the area of
pharmacy that deals with the quantitative
and theoretical principles of science as they
apply to the practice of pharmacy. Physical
pharmacy attempts to integrate the factual
knowledge of pharmacy through the devel-
opment of broad principles of its own, and
it aids the pharmacist, the pharmacologist
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and the pharmaceutical chemist in their at-
tempt to predict the solubility, stability,
compatibility, and the rate of absorption and
duration of action of drug products. As a
result of this knowledge, the pharmaceutical
scientist is in a better position to develop
new drugs and dosage forms and to improve
upon the various modes of administration.

CONCEPTS AND METHODS OF SCIENCE

The reader was no doubt introduced to
the Scientific Method in general chemistry.
Much has been written and said about this
“method.” Some philosophers and scientists,
perhaps the most famous of whom was Aris-
totle, have suggested that there is a series
of well-ordered steps by which the scientist
proceeds to attack and solve problems.
Others, however, have doubted the exis-
tence of the method. They argue that the
scientist uses no magic formula which is not
also available to the businessman and to the
housewife for confronting and solving their
daily problems. Darlington, an English ge-
neticist, has asserted that science does not
progress like a steamroller, crushing each
problem that falls in its path and compress-
ing it into its proper place. Instead, it
behaves like a sticking drawer which gives
on one side and then jams on the other.

We shall not attempt to settle the question
of whether scientific investigation proceeds
in an orderly array of techniques and meth-
ods, or in a haphazard process of trial and
error with no holds barred. However, we can
perhaps shed some light on the workings of
science by considering in a general way
some of the tasks in which the scientist en-
gages. These include: observing phenomena
and forming tentative approaches and solu-
tions known as hypotheses; experimenting
and arranging the data in an orderly manner
so as to form generalizations, preferably
mathematical relationships or laws; com-
bining these laws into a unified theory so as
to “explain” the nature of the relationships
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and predict new phenomena and regularities
in nature; and finally verifying the theory
by further experimentation. In addition to
careful experimentation and thought on the
part of the researcher, the program usually
calls for a greater or lesser amount of crea-
tive imagination and ingenuity in suggesting
tentative hypotheses, in organizing the data
into generalizations and mathematical laws,
and in the development of theories.

If one would watch an average investi-
gator as he proceeded to solve a scientific
problem, he might observe the following
stages. More than likely the scientist would
approach a totally new problem by the
method of trial-and-error. As he developed
a clearer understanding of the problem
through continued experimentation and be-
gan to recognize certain relationships among
the elements, the investigator would pass
from the early exploratory phases through
a succession of increasingly ordered and
planned stages of research. Finally, when
conclusions checked with experimental re-
sults the scientist would be well along the
way to a satisfactory solution to the problem.

The student should pause at this point
in the development of the subject to con-
sider methods by which Physical Pharmacy
can be made both interesting and worth-
while.

This course should mark the turning point
in the study pattern of the advanced student,
for in the latter part of the pharmacy curric-
ulum emphasis is placed upon the applica-
tion of scientific principles to practical pro-
fessional problems. Although facts must be
the foundation upon which any body of
knowledge is built, the rote memorization of
disjointed “particles” of knowledge does not
lead to logical and systematic thought. The
student should strive in this course to inte-
grate facts and ideas into a meaningful
whole. In his future career he frequently
will call upon these generalizations to solve
practical pharmaceutical problems.

The comprehension of course material is
primarily the responsibility of the student.
The teacher can guide and direct, explain
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and clarify, but facility in solving problems
in the classroom and the laboratory depends
largely on the student’s understanding of
theory, his recall of facts, his ability to inte-
grate knowledge, and his willingness to de-
vote sufficient time and effort to the task.
Each assignment should be read and out-
lined, and assigned problems should be
solved outside the classroom. The teacher’s
comments will then serve to clarify question-
able points and aid the learner to improve
his judgment and reasoning ability.

DIMENSIONS AND UNITS

The properties of matter are usually ex-
pressed by the use of three arbitrarily chosen
quantities: length, mass and time. Each of
these properties is assigned a definite unit
and a reference standard. In the metric sys-
tem the units are the centimeter (cm), the
gram (g or Gm) and the second (sec); ac-
cordingly it is often called the cgs system. A
reference standard is a fundamental unit
relating each measurable quantity to some
natural or artifical constant in the universe.

Measurable quantities such as area, den-
sity, pressure and energy are compounded
from the three fundamental properties re-
ferred to above. In carrying out the opera-
tion of measurement we assign to each prop-
erty a dimension which is expressed quan-
titatively in units. Thus the quantities of
length, area and volume are measured in the
dimension of length (L), length squared (L?),
and length cubed (L3), respectively corres-
ponding to the unit of cm, cm? and cm3.
The fundamental dimensions and units are
given in Table 1-1.

Length and Area. The dimension of
length serves as a measure of distance and

has as its reference standard the meter. It is
defined as

1 meter = 1.65076373 X 106)\Kr-86

where Agrgs = 6.0578021 X 1077 m is
the wave length in vacuo of the transition
between two specific energy levels of the
krypton-86 atom. Prior to this definition, the
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TABLE 1-1. Fundamental Dimensions and Units

Measurable Dimensional Reference
Quantity Symbol Cgs Unit Standard
Length () L Centimeter (cm) Meter

Mass (m) M Gram (g or Gm) Kilogram

Time (t) T Second (sec) Mean solar day

meter was arbitrarily defined as the distance
between two lines on a platinum-iridium bar
preserved at the International Bureau of
Weights and Measures in Sévres, France.
The unit of length, the centimeter (cm), is
one-hundredth of a meter, the common divi-
sions and multiples of which are found in
general chemistry and pharmacy books. In
the microscopic range, lengths are often ex-
pressed as microns (u), millimicrons (mp)
and Angstrom units (A). The micron is equal
to 0.001 mm, the millimicron is 0.001 p, and
the Angstrom unit is 0.1 mp or 1078 cm.

Area is the square of a length and has the
unit of square centimeters (sq cm or cm?).

Volume. The measurable quantity, vol-
ume, is also derived from length. Its refer-
ence standard is the cubic meter; its unit is
one-millionth of this value or 1 cubic centi-
meter (cc or cm3). Volume was originally
defined in terms of the liter, the volume of a
kilogram of water at 1 atmosphere pressure
and 4° C, and was meant to be equivalent to
1000 cc. Owing to the failure to correct for
the dissolved air in the water, however, the
two units do not compare exactly. It has
since been established that 1 liter actually
equals 1000.027 cc. Thus, there is a discrep-
ancy between the milliliter (one-thousandth
of a liter) and the cubic centimeter, but it
is so slight as to be disregarded in general
chemical and pharmaceutical practice.
Volumes are usually expressed in milliliters
(ml) in this book in conformity with the U.S.
Pharmacopeia and the National Formulary;
however, cubic centimeters are employed
sometimes in the text where this notation
seems more appropriate.

The pharmacist uses cylindrical and coni-
cal graduates, droppers, pipettes and bu-
rettes for the measurement of volume; grad-
uates are used more frequently than the
other measuring apparatus in the pharmacy
laboratory. The flared conical graduate is
less accurate than the cylindrical type, and
the use of the flared graduate should be
discouraged except for some liquids which
need not be measured accurately. The selec-
tion of the correct graduate for the volume
of liquid to be measured has been deter-
mined by Goldstein et al.l

Mass. The standard of mass is the kilo-
gram. It is the mass of a platinum-iridium
block preserved at the Bureau of Weights
and Measures. The practical unit of mass is
the gram (Gm), which is one-thousandth of
a kilogram. Mass is often expressed as the
weight of a body. The balance is said to be
used for “weighing,” and the standard
masses are known as “weights.”” The proper
relationship between mass and weight will
be considered under the topic of force.

In order to weigh drugs precisely and ac-
curately, the pharmacist must understand
the errors inherent in operating a balance.
A Class A balance, used for the compound-
ing of prescriptions, is serviceable only if
kept in good working condition and if
checked periodically for equality of arm
length, beam rider accuracy, and sensitivity.
These tests are described in the booklet by
Goldstein and Mattocks.? Furthermore, a
good balance is of no use unless an accurate
set of weights is available.

Density and Specific Gravity. The phar-
macist frequently uses these measurable
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quantities when interconverting between
mass and volume. Density is a derived quan-
tity since it combines the units of mass and
volume. It is defined as mass per unit volume
at a fixed temperature and pressure and is
expressed in the metric system in grams per
cubic centimeter (Gm/cm3).

Specific gravity, unlike density, is a pure
number without dimension; however, it may
be converted to density by the use of appro-
priate formulas.? Specific gravity is defined
as the ratio of the density of a substance to
the density of water, the values for both
substances being determined at the same
temperature unless otherwise specified. The
term specific gravity in light of its definition
is a poor one; it would be more proper to
refer to it as relative density.

Specific gravity is more often defined for
practical purposes as the ratio of the mass
of a substance to the mass of an equal volume
of water at 4° or at some other specified
temperature. The following notations are
frequently found to accompany specific
gravity readings: 25°/25°, 25°/4° and
4°/4°. The first figure refers to the tempera-
ture of the air in which the substance was
weighed; the figure following the slant line
is the temperature of the water used. The
official pharmaceutical compendia use a
basis of 25°/25° for expressing specific
gravity.

Specific gravity may be determined by the
use of various types of pycnometers, the

TABLE 1-2. Derived Dimensions and Units
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Mohr-Westphal balance, hydrometers and
other devices. The measurements and cal-
culations are discussed in elementary chem-
istry, physics and pharmacy books.

Other Dimensions and Units. The de-
rived dimensions and their units are listed in
Table 1-2. Although the units and relations
are self-explanatory for most of the derived
dimensions, force, pressure and energy re-
quire some elaboration.

Force. One is familiar with force in every-
day experience as a push or pull required
to set a body in motion. The larger the mass
of the body and the greater the required
acceleration, the greater is the force that one
must exert. Hence, the force is directly pro-
portional to the mass (when acceleration is
constant) and to the acceleration (when the
mass is constant). This may be represented
by the relation,

Force o Mass X Acceleration (1)

This proportionality is converted to an
equality, i.e., to an equation or mathematical
expression involving an equal sign, accord-
ing to the laws of algebra by the introduc-
tion of a constant. Accordingly, we write

F=kocdmea 2)

in which f is the force, k is the proportion-
ality constant, m is the mass and a is the
acceleration. If the units are chosen so that
the constant becomes unity, i.e., has the

Measurable Relationship to
Quantity Dimension Cgs Unit Other Dimensions
Area (A) L2 the square of a length
Volume (V) L3 the cube of a length
Density (p) ML-3 Gm/cms3 mass/unit volume
Velocity () ERt cm/sec length/unit time
Acceleration (a) | cm/sec? length/(time)?

Force (f) MLT-2 Gm cm/sec? or dyne mass X acceleration
Pressure (p) ML-1T-2 dyne/cm? force/unit area
Energy (E) ML2T-2 Gm cm?/sec? or erg force x length
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value of 1, the well-known force equation
of physics is obtained:

f=mXa )

The unit of force is the dyne, defined as
that force which imparts to a mass of 1
gram an acceleration of 1 cm/sec?.

The reader should recall from physics that
weight is the force of gravitational attraction
that the earth exerts on a body, and it prop-
erly should be expressed in force units
(dynes) rather than mass units (grams). The
relationship between weight and mass can
be obtained from equation (3). Substituting
weight w for force and g for acceleration,
the equation becomes

w=mxXg (4)

Although the gravitational acceleration of
a body varies from one part of the earth to
another, it is approximately eonstant at 981
cm/sec?. Substituting this value for g, the
weight of a 1 gram mass is calculated from
equation (4) as follows:

w = 1Gm X 981 cm/sec?
and
w = 981 Gm cm/sec? or 981 dynes

Therefore, the weight of a body with a mass
of 1 gram is actually 981 dynes. It is common
practice to express weight in the mass unit,
grams, since weight is directly proportional
to mass; however in problems involving
these physical quantities, the distinction
must be made.

Pressure. Pressure may be defined as
force per unit area; the unit commonly used
in science is dyne/cm?2. Pressure is often
given in atmospheres (atm), or in centi-
meters or millimeters of mercury. This latter
unit is derived from a measurement of the
height of a column of mercury in a barom-
eter which is used to measure the atmos-
pheric pressure. At sea level the mean pres-
sure of the atmosphere supports a column
of mercury 76 cm (760 mm) in height. The
barometric pressure may be translated into
the fundamental pressure unit, dyne/cm?,
by multiplying the height times 1 ¢cm? cross

sectional area by the density of mercury,
13.595 Gm/cm?, at 0° to give the mass and
multiplying this by the acceleration of
gravity, 980.7 cm/sec?. The result divided
by cm? is 1.0133 X 106 dyne/cm? andis
equal to 1 atm.

Work and Energy. Energy is frequently
defined as the condition of a body which
gives it the capacity for doing work. The
concept actually is so fundamental that no
adequate definition can be given. Energy
may be classified as kinetic energy or poten-
tial energy.

The idea of energy is best approached by
way of the mechanical equivalent of energy
known as work and the thermal equivalent
of energy or heat. When a constant force is
applied to a body in the direction of its
movement, the work done on the body
equals the force multiplied by the displace-
ment, and the system undergoes an increase
in energy. The product of force and dis-
tance has the same dimensions as energy,
namely ML2T~2. Other products also having
the dimensions of energy are pressure X
volume, surface tension X area, mass X
velocity?, and potential difference X quan-
tity of electricity.

The cgs unit of work, also the unit of
kinetic and potential energy, is the erg. It
is defined as the work done when a force of
1 dyne acts through a distance of 1 centi-
meter:

lerg = 1dyne X 1cm

The erg is often too small for practical use
and is replaced by the absolute joule (pro-
nounced jewel) which is equal to 107 ergs:

1 absolute joule = 1 x 107 erg

In carrying out calculations in the cgs sys-
tem involving work and pressure, work must
be expressed in ergs and pressure in dynes/
cm?. When using any other system, consist-
ent units must also be employed.

Heat and work are equivalent forms of
energy and are interchangeable under cer-
tain circumstances. The thermal unit of
energy is the gram calorie (small calorie).
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It was formerly expressed as the amount of
heat necessary to raise the temperature of
1 gram of water from 15° to 16° C. The
small calorie is now defined as equal to 4.184
absolute joules. The large or kilogram calorie
(kcal) equals 1000 small calories.

Temperature is assigned a unit known as
the degree. On the centigrade and the Kelvin
or absolute scales, the freezing and boiling
points of pure water at 1 atm pressure are
separated by 100 degrees. Zero degrees on
the centigrade scale equals 273.16° on the
Kelvin scale.

SOME ELEMENTS OF MATHEMATICS

The student should become familiar with
the fundamental concepts of mathematics
which are frequently employed in the physi-
cal sciences and upon which are based many
of the equations and graphical representa-
tions encountered in the remainder of the
book. The fundamentals of calculus are
found in the next chapter.

Calculations Involving Dimensions.
Ratio and proportions are frequently used
in the physical sciences for conversions from
one system to another. The following cal-
culation illustrates the use of proportions.

Example 1. How many gram calories are
there in 3.00 joules? One should first recall
a relationship or ratio that connects calories
and joules. The relation, 1 cal = 4.184
joules, comes to mind. The question is then
asked in the form of a proportion: “If 1
calorie equals 4.184 joules, how many cal-
ories are there in 3.00 joules?”” The propor-
tion is set down, being careful to express
each quantity in its proper units. For the
unknown quantity, an “X” is used.

lcal _ X
4.184 joules  3.00 joules
¥ 3.00 joules X 1 cal
4.184 joules
X =0.717 cal

A second method, based on the require-
ment that the units as well as the dimensions
must be identical on both sides of the equal
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sign, is sometimes more convenient than the
method of proportions.

Example 2. How many gallons are equiv-
alent to 2.0 liters? It would be necessary
to set up successive proportions in order to
solve this problem. In the method involving
identity of dimensions on both sides of the
equation, the quantity desired X (gallons)
is placed on the left and its equivalent, 2.0
liters, is set down on the right side of the
equation. The right side must then be multi-
plied by known relations in ratio form, such
as 1 pint per 473 ml, to give the units of
gallons. Carrying out the operations indi-
cated yields the result with its proper units.

X = 2.0 liters X (1000 ml/liter)
X (1 pt/473 ml) X (1 gal/8 pt)
X = 0.53 gal

One may be concerned about the apparent
disregard for the rules of significant figures
(p- 13) in the equivalents such as 1 pint =
473 ml. The quantity of pints can be meas-
ured as accurately as the milliliters, so that
we assume 1.00 pint is meant here. The
quantities 1 gallon and 1 liter are also exact
by definition, and significant figures need
not be considered in such cases.

Exponents. The various operations in-
volving exponents, that is the powers to
which a number is raised, are best reviewed
by studying the examples set out in Table
1-3.

Logarithms. The equality

103 = 1000 (5)
is expressed in logarithmic notation as:
IOglo 1000 = 3 (6)

The exponent 3 to which the base 10 is
raised to give 1000 in equation (5) is referred
to as the logarithm of 1000. The number
1000 is known as the antilogarithm of the
number 3. In general, if b, raised to the
power x, gives the number a, then the log-
arithm to the base b of a is x:

bt =a (7
logya = x (8)
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TABLE 1-3. The Rules of Exponents

aXaXa=ad

a2 X a3 = a?*3 = a®

(@23 = a% X a2 X a2 = ab
o) = o

a’/a? = @> 2 = a3

@/at =a" *=a —a

When 10 is used as the base the logarithm
is known as the common or Briggsian log-
arithm, whereas the number 2.71828. ..,
designated as e, is used as the base for the
natural or Napierian logarithms. The quan-
tity e is important in the theoretical develop-
ment of the physical and biochemical sci-
ences and is discussed in some detail by
Daniels.4 It is the sum of the series 1 + 1 +
1/214+1/3!+1/4! ... where | denotes a fac-
torial number which is defined as the prod-
uct of the positive integers between 1 and
the number. Thus 2!=1x2, 3!=1%2Xx3
=6, and 4 =1 X 2 x 3 X4 =24. The
common logarithms are designated by the
symbol logyy or simply as log, while the
natural logarithms are written as log, or In.

It often happens that one has access only
to a table of common logarithms. To convert
from one system to another, particularly
from the natural to the common logarithm,
the following formula is used:

Ina = 2.303log a (9)
Equation (9) may be derived as follows. Let
loga = x (10)

so that
a=10* (11)

and taking the natural logarithm, equation
(11) becomes

Ing=In10¢ = xIn 10 (12)
Now In 10 = 2.303 and equation (12) be-

comes

Ina = 2.303 x (13)

and substituting the identity x = log @ from

a’/at = a2 4 — a2 = b
a?

e =g == g — |

a2 = \/a

al/2 X gl/2 — qV2H2 — gl — g

a?’3 = (a?)173 = W

equation (10) into equation (13) gives the
desired formula.

The application of logarithms is best dem-
onstrated by considering several examples.
In the expression,

log 60.0 = 1.778

the digit 1 to the left of the decimal point in
the logarithm is known as the characteristic
and signifies that the number 60.0 belongs
to that class of numbers with a magnitude
of 101, and thus contains two figures to the
left of the decimal point. The quantity 0.778
of the logarithm is known as the mantissa
and is found in the table of common loga-
rithms. It is often convenient to express the
number 60.0 by writing it with one signifi-
cant figure to the left of the decimal point
6.00 multiplied by 10 raised to the first
power, viz. 6.00 X 101. The exponent of 10
then gives the characteristic and the value
in the logarithm table gives the mantissa
directly.

This method may be used to obtain the
logarithm of 6000 as follows. The number
is first written as 6.000 x 103 if it is accurate
to four significant figures. The characteristic
is observed to be 3, and the mantissa is
found in the table as 0.7782. Hence,

log 6000 = 3.7782

For decimal fractions which frequently ap-
pear in problems involving molar concentra-
tion the following method is used. Suppose
one desires to know the logarithm of 0.0600.
The number is first written as 6.00 x 10~2.
The characteristic of a number may be posi-
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tive or negative; the mantissa is always posi-
tive. The characteristic in this case is —2
and the mantissa is 0.778. Hence,

log 0.0600 = —2 + 0.778 = —1.222

Finding the number when the logarithm is
given, i.e., obtaining the antilogarithm, is
shown by the following example. What is
the value of a if log a = 1.7404? The char-
acteristic is 1 and the mantissa is 0.7404.
From the table of logarithms one finds that
the number corresponding to a mantissa of
0.7404 is 5.50. The characteristic is 1, so
that the antilogarithm is 5.50 X 101 or 55.0.

Let us find the antilogarithm of a negative
number, —2.699. Recalling that the man-
tissa must always be positive, we first sepa-
rate the logarithm into a negative char-
acteristic and positive mantissa:

—2.699 = —3.00 + 0.301

This transformation is easily seen in Figure
1-1 where —2.699 corresponds to going
down the scale in a negative direction to —3
and coming back up the scale 0.301 units in
the positive direction. Actually by this proc-
ess we are subtracting 1 from the character-
istic and adding 1 to the mantissa, or to the
quantity

—9.699 = (—2) + (—0.699)
we subtract and add 1 to yield
(—2 — 1) + (—0.699 + 1) = —3 + 0.301

The result (—3 + 0.301) is sometimes ab-
breviated to (3.301) where the minus sign
above the 3 applies only to the character-
istic. 3 is commonly referred to as “bar

TABLE 1-4. Rules of Logarithms
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0 1 o+ ot
-1+ —14 —1+
_3 " i | 2.699
_2 | _2 1 _2 | l
10301 1
-3+ _3+4 = _34+

FiIG. 1-1. Schematic representation for finding the
antilogarithm of a negative number.

three.” It is common practice in some fields,
such as quantitative analysis, to use the form
in which 10 is added and subtracted to give

3.301 = 7.301 — 10

For physical chemical calculations and for
plotting logarithms of numbers it is more
convenient to use the form —2.699 than one
of the forms having a mixture of negative
and positive parts. However for use with
logarithm tables the mixed form is needed.
Thus in order to obtain the antilogarithm,
we write the logarithm as 3.301. The num-
ber corresponding to the mantissa is found
in the logarithm table to be 2.00. The char-
acteristic is observed to be — 3, and the final
result is therefore 2.00 X 1073,

As seen in the table of exponents (Table
1-3), numbers may be multiplied and di-
vided by adding and subtracting exponents.
Since logarithms are exponents they follow
the same rules. Some of the properties of
logarithms are exemplified by the identities
collected in Table 1-4.

logab = loga + loghb

Iog%: loga — logh

log 1 — 0 since 100 — 1

Iogl_—_ logl — loga = —loga
a

loga? = loga + loga = 2 log a

log a = logal’2 = llog a

loga2= —2loga=2log>
a

(&)
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Variation. The scientist is continually at-
tempting to relate phenomena and establish
generalizations with which to consolidate
and interpret the data of his experiments.
The problem frequently resolves itself into
a search for the relationship between two
quantities which are changing at a certain
rate or in a particular manner. The depend-
ence of one property, the dependent vari-
able y, on the change or alteration of another
measurable quantity, the independent vari-
able x, is expressed mathematically as

y < x (14)

which is read: “y varies directly as x,”” or “y
is directly proportional to x.” A propor-
tionality is changed to an equation as
follows. If y is proportional to x in general,
then all pairs of specific values of y and x, say

y1 and x1, y2 and xg, . . ., are proportional.
Thus

nh__ (15)
X1 X2
Since the ratio of any y to its corresponding
x is equal to any other ratio of y and x, the
ratios are constant, or, in general

Yy

<= constant (16)

Hence it is a simple matter to change a pro-
portionality to an equality by introducing a
proportionality constant, k. To summarize, if

yx<x
then
y=kx (17)

It is frequently desirable to show the re-
lationship between x and y by the use of the

more general notation,

y=f) (18)

which is read: “y is some function of x.”
That is, y may be equal to 2x, to 27x2, or to

0.0051 + logﬂx. The functional notation,

equation (18), merely signifies that y and x
are related in some way without specifying
the actual equation by which they are con-
nected. Some well-known formulas illustrat-
ing the principle of variation are shown in
Table 1-5.

Graphical Methods. Scientists are not
usually so fortunate as to begin each prob-
lem with an equation at hand relating the
variables under study. Instead, the investi-
gator must collect raw data and put them in
the form of a table or graph where he can
better observe the relationships. Construct-
ing a graph with the data plotted in a man-
ner so as to form a smooth curve often
permits the investigator to observe the re-
lationship more clearly, and perhaps allows
him to express the connection in the form of
a mathematical equation. The procedure of
obtaining an empirical equation from a plot
of the data is known as curve fitting, and is
treated in books on statistics and graphical
analysis as found in the Appendix, p. 606.

The magnitude of the independent vari-
able is customarily measured along the hori-
zontal coordinate scale called the x axis. The

TABLE 1-5. Formulas lllustrating the Principle of Variation

Dependent Independent Proportionality

Measurement Equation Variable Variable Constant
Circumference Cl=nD Circumference, C Diameter, D o = 31416, .

of a circle
Density M = oV Mass, M Volume, V Density, p
Distance of s = 1gt? Distance, s Time, 2 Gravity

falling body constant, g
Freezing point AT, = Km Freezing point Molality, m Cryoscopic

depression depression, ATy constant, K;
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dependent variable is measured along the
vertical scale or the y axis. The data are
plotted on the graph and a smooth line is
drawn through the points. The x value of
each point is known as the x coordinate or
the abscissa; the y value is known as the y
coordinate or the ordinate. The intersection
of the x axis and the y axis is referred to as
the origin. The x and y values may be either
negative or positive.

The simplest relationship between two
variables, where the variables contain no
exponents other than one ( first degree equa-
tion), yields a straight line when plotted on
rectangular graph paper. The straight-line
or linear relationship is expressed as

y=ax+Db (19)

in which y is the dependent variable, x is the
independent variable, and a and b are con-
stants. The constant a is the slope of the line;
the greater the value of a the steeper the
slope. It is expressed as the change in y with
the change in x ora = ny—; a is also the tan-
gent of the angle that the line makes with
the x axis. The slope may be positive or neg-
ative depending on whether the line slants
upward or downward to the right. When
a = 1 the line makes an angle of 45° with
the x axis (tan 45° = 1) and the equation of
the line may then be written,

When a = 0 the line is horizontal, i.e., par-
allel to the x axis, and the equation reduces
to

gk (21)

The constant b is known as the y intercept
and signifies the point at which the line
crosses the y axis. If b is positive, the line
crosses the y axis above the x axis; if neg-
ative, it intersects the y axis below the x axis.
When b is zero the equation may be written,

Y —eax (22)
and the line passes through the origin.
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TABLE 1-6. Refractive Indices of Mixtures of
Benzene and Carbon Tetrachloride

(x) ()

Conc. CCly Refractive Index
Volume Per Cent (n)

10.0 1.497

25.0 1.491

33.0 1.488

50.0 1.481

60.0 1.477

The results of the determination of the
refractive index of a benzene solution con-
taining increasing concentrations of carbon
tetrachloride are found in Table 1-6. The
data are plotted in Figure 1-2 and are seen
to produce a straight line with a negative
slope. The equation of the line is obtained
by using the two-point form of the linear
equation,

N Sl ST
=2 Wpn) @)

¥ = n
The method involves selecting two widely
separated points (x1, y1) and (x2, y2) on the
line and substituting into the two-point
equation.

1,500 y-intercept = 1.501

X1,Y1

/(/Slope = —4.00 x 10+

1.490

Refractive index

1.480

Equation of line A
y = —4.00 x 10~4x 4+ 1.501 »

1.470 . d L
0 20 40 60

Carbon tetrachloride, % by volume

F1G. 1-2. Refractive index of the system benzene-car-
bon tetrachloride.



