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PREFACE

This book is a result of the author’s thirty years of experience teaching and directing
research in radiation heat transfer at Virginia Tech. As is often the case, the book
evolved from class notes distributed to critical graduate students. Therefore, it bears
the brand not only of the author but also of a generation of bright young scholars who
continuously challenged the author to get it right and make it relevant. For better or
for worse, the result is a book written for students rather than for professors.

The material in this book is divided into three parts:

Part I: Fundamentals of Thermal Radiation
Part II: Traditional Methods of Radiation Heat Transfer Analysis
Part III: The Monte Carlo Ray-Trace Method

If the book is to be used in a one-semester course it is recommended that one of
the two options indicated in the figure on page xvi be followed. Both options would
use the first six chapters, which present the fundamentals of thermal radiation. A one-
semester course emphasizing the traditional methods of radiation heat transfer, which
includes the net-exchange formulation, would be based on the first six chapters plus
Chapters 7, 8, 9, 10, and 11; while a one-semester course emphasizing the statistical
formulation (the Monte Carlo ray-trace method) would use the first six chapters plus
Chapters 11, 12, 13, 14, and 15. Chapter 11, “Introduction to the Monte Carlo Ray-
Trace Method,” is included in both of these options. In addition to these two options,
the book is ideally suited for a two-semester (or three-quarter) sequence that covers
all of the material.

While authors of recent radiation heat transfer textbooks have included the MCRT
method as a viable option, it has usually been presented as an option of secondary im-
portance. In this textbook the method has been promoted to its rightful position as an
equal partner in radiation heat transfer modeling. The goal of this book is to present
the subject at a level of detail and nuance that will allow the uninitiated practitioner
to begin formulating accurate models of complex radiative systems without first as-
suming away all of the complexity.

If the MCRT method has been criticized in the past for its excessive demand on
computer resources, such criticism stands without merit today in a world inundated
by a virtual tidal wave of inexpensive computing power. Software tools such as the
MCRT-based Program FELIX, the student version of which is packaged with this
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book, are now fully capable of free interaction with a wide range of CAD and spread-
sheet systems. It seems that this trend must inevitably lead to a future that places in-
creased value on the material in Part III of this book at the expense of the material in
Part II. Still, change comes slowly. The traditional methods of Part IT are well en-
trenched in our technical culture and are likely to remain influential in the foresee-
able future.

J. R. MAHAN, PhD, PE
Blacksburg, Virginia
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