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NOISE IN MEASUREMENTS




PREFACE

This book discusses the effect of noise on the accuracy of measurements. It
brings together material that was spread throughout many textbooks and a
vast amount of past and current literature. The text was developed from a
series of lectures given at the Universities of Minnesota and Florida.

Chapters 1-7 provide the necessary background. After a short introduc-
tion, the method of distribution functions for calculating averages, auto-
correlation, and cross-correlation functions is developed in Chapter 2.
Chapter 3 considers a few simple applications, and Chapter 4 examines
binomial, Poisson, and normal distribution functions and develops the
variance theorem. Chapter 5 discusses Fourier analysis methods and shows
how spectral intensities can be calculated. Chapter 6 takes up noise
characterization in two-terminal and four-terminal devices, and Chapter 7
examines flicker noise and generation-recombination noise.

Chapters 8-17 deal with applications. Chapter 8 treats measurements of
small currents, voltages, and charges; Chapter 9 studies thermal radiation
detectors like thermocouples and bolometers. Chapter 10 investigates pho-
todetectors of the photoemissive, photodiode, and the classical detector
types. Chapter 11 deals with photoconductive detectors, and Chapter 12
considers pyroelectric detectors and capacitive bolometers, then Chapter
13 examines noise in television pick-up tubes. Chapter 14 investigates
photomixing, after which Chapter 15 deals with light amplification with
electroluminescence. Chapter 16 gives a discussion of Josephson junction
devices. Chapter 17 briefly examines high-energy quantum and particle
detectors. The appendix derives a few formulas of the theory of ferroelec-
trics used in Chapter 12.
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I am indebted to my graduate students at the Universities of Minnesota
and Florida who helped shape the manuscript and to Mrs. van der Ziel
who helped prepare it.

A. VAN DER ZIEL

Minneapolis, Minnesota
April 1976
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1

INTRODUCTION

In physics and electrical engineering one often encounters fluctuating
signals generated in electrical circuits, electrical devices, or other measur-
ing systems. Such fluctuating signals are generally called noise.

The name “noise” requires explanation. If the fluctuating voltage or
current generated in a circuit component or electronic device is amplified
by a low-frequency amplifier and the amplified signal is fed into a
loudspeaker, the loudspeaker produces a hissing sound; hence the name
“noise.” The name “noise” now refers to any spontaneous fluctuation,
independent of whether an audible sound is produced.

Noise sets a lower limit to the signals that can be processed electroni-
cally. In the same way it sets lower limits to-practically all types of
measurement. It is important to minimize the noise-to-signal ratio in any
such measurement and so determine the limit of accuracy of these
measurements. It is the aim of this book to familiarize the reader with
these problems in the measurement of currents, voltages, charges, and
amounts of radiation.

The important sources of noise that will be encountered are thermal
noise, shot noise, generation-recombination noise, temperature-fluctuation
noise, and flicker noise. We now discuss these noise sources in somewhat
greater detail.

Thermal noise is due to the random motion of carriers in any conductor;
as a consequence of this random motion a fluctuating electromotive force
(e.m.f.) V' (7) is developed across the terminals of the conductor. The same
phenomenon occurs in the conducting channel of field-effect transistors
(FET). It is the dominant noise source in any device that is electrical in
nature and in thermal equilibrium with a temperature bath kept at a fixed
temperature 7.

Shot noise occurs whenever a noise phenomenon can be considered as a
series of independent events occurring at random. For example, in the case

1



2 Introduction

of emission of electrons by a thermionic cathode or by a photocathode, the
emission of electrons consists of a series of independent random events;
hence the emission currents show shot noise. In p—n junctions and transis-
tors the crossing of a junction by electrical carriers (electrons or holes)
constitutes a series of independent random events, hence the currents in
such devices show shot noise. It equally holds when transitions occur
between two energy levels, such as in the generation and recombination of
carriers in a semiconductor, or when photons are emitted by a laser. In
each case one must ask what entities make up the series of independent
random events that produce shot noise.

Generation-recombination noise occurs whenever free carriers are gener-
ated or recombine in a semiconductor material. The fluctuating rates of
generation and recombination can be considered as a series of independent
events occurring at random, and hence the process can be considered as a
shot-noise process. However, it is also useful to consider the fluctuation &n
in the carrier density » as giving rise to a fluctuation R in the resistance R
of the device. This resistance fluctuation R can be detected by passing a
d.c. current I through the sample; the current I develops a fluctuating
eamn.f. V (¢)=18R () across its terminals, and this-e.m.f. can be amplified
and measured by standard techniques.

Temperature-fluctuation noise of a small body occurs because of the
fluctuating heat exchange between the body and its environment due to
fluctuations in the emitted and received radiation and to fluctuations in
the heat conduction. The first can be described by fluctuations in the rate
of emission and absorption of quanta by the small body. The fluctuations
in the heat conduction are always present, since the small body must
always have some heat-conducting path (wires, connections, etc.) to its
environment. When air is blown over the small body or liquid is flowing
past the small body, there is also a fluctuating heat convection; it is not
essential, however, since it can be eliminated by proper techniques.

Flicker noise can be due to various causes and is characterized by its
spectral intensity (see Chapter 5). Most noise sources have a spectral
intensity that is constant at low frequencies and decreases more or less
rapidly above a certain “turnover” frequency that is characteristic for the
noise source in question. The various forms of flicker noise have in
common the condition that their spectral intensity is of the form const/f*
with a close to unity, so that their effect is most pronounced at low
frequencies.

Fluctuating quantities like currents, voltages, temperatures, or numbers
of carriers are called random variables. One speaks of a continuous random
variable when the fluctuating quantity can assume a continuous range of
values and of a discrete variable when the fluctuating quantity can only
assume discrete values. The fluctuating number of carriers in a semicon-
ductor sample is a discrete random variable.



2

DISTRIBUTION FUNCTIONS,
AVERAGES, AUTOCORRELATION,
AND CROSSCORRELATION FUNCTIONS

In calculations about noise in electrical measuring systems one must often
calculate the averages of a function g(X) of the random variable X (¢) in
question. It is denoted by g(X) and is calculated with the help of the
probability density function or distribution function of the variable X (¢).

This function, in turn, is introduced by considering probabilities in an
ensemble, namely a very large assembly of systems subjected to indepen-
dent fluctuations. To make the discussion more precise, the number of
systems should go to infinity.* We discuss this in Section 2.1a for a single
random variable and in Section 2.1b for multiple random variables.

In the case of two random variables X () and Y (1) with X=Y=0, the
average X Y may not be zero. The quantities X (r) and Y () are then said to
be correlated. A particular case of correlation occurs if we consider a
random variable X (u) at the instants ¢ and (z+s), the function
X (1)X (t+s) is called the autocorrelation function. Extension to several
random variables leads to autocorrelation and crosscorrelation functions.
(Section 2.2).

2.1 DISTRIBUTION FUNCTIONS AND AVERAGES
2.1a Single Random Variable

We consider an ensemble of N systems in which the fluctuations are
described by the random variable X (1) and let N go to infinity. Let AN
elements of the ensemble have a value of X (7) between X and (X +AX) at

*In an ensemble with N elements the relative accuracy of the averages is N ~!/2, so that it
corresponds to 0.01 for N=10%



4 Distribution Functions

the instant 7;. One then calls AP=(AN/N) the probability that the
random variable X (¢) had a value between X and (X +AX) at the instant
t,. Obviously AN is proportional to AX as long as AX is sufficiently small,
so that (AP/AX) is independent of AX. More precisely, we may write in
differential form

%=f(x,zl), or dP=f(X,1,)dX @.1)

The function f(X,¢,) is called the probability density function of X at the
instant ¢;. When f(X,¢,+¢) is independent of ¢, that is,

f(X,t,+ ) =f(X,t)=f(X) (2.1a)

the variable is said to be stationary. The noise processes encountered in
physics and engineering are nearly always stationary.

Since the variable X must certainly lie within the range of allowed
values, we have, if the integration is extended over all allowed values of X,

f f(X)dx=1 (2.2)

Such a function f(X) is said to normalized. If f(X) is not normalized, it can
be multiplied by a normalizing factor C so that Cf(X) is normalized, that
is,

~i

[cr(xyax=1 or C=Uf(X)dx} (2.2a)

We may thus assume without lack of generality that f(X) is normalized.
We can now define ensemble averages as follows: The ensemble average

of X™, denoted by X", is defined as

x™ =fX’"f(X)dX (2.3)

and the average of a function g(X) of X is defined as

g(X) = [ g(X)f(x)dx (2.32)

where the integration is extended over all values of X. If f(X) is symmetri-
cal in X, that is, if f(X)=f(—X), and X can vary between — X, and X,
then the averages of all odd powers of X are zero.

The most important averages are X and X2 If X is not zero, one should
introduce AX =(X —X) as a new random variable. The most important
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average is then AX 2, which is denoted by the symbols var X or o2,
varX=o2= (X—X)2 = X2 = 2XX +(X)’'= X2 —(X)" (24

If we look at a single element of the ensemble for the time interval
0< < T, we can make up the time average { g(X)) of a function g(X) of
X by the definition

Ca(X)= Jim 7 ["g(X)dr 29)

If this time average approaches the ensemble average (2.3a) in the limit
when T goes to infinity, the noise processes under investigation are said to
be ergodic. The noise processes encountered in physics and engineering are
practically always ergodic.

In the case of discrete random variables the definitions must be properly
modified and all integrations must be replaced by summations. Let P(n)
be the probability that the discrete variable has the value n, then the
normalization condition becomes

> P(n)=1 (2.6)
n
and the ensemble average of n™ must be defined as

n™ = n"P(n) N

(m=1,2...). The variance of n is again defined as

2

(2.8)

varn= (n—n)* =?—(;)

2.1b Multivariate Distributions and Averages

For two continuous variables X,(f) and X,(¢) one can evaluate the proba-
bility that X ,(¢) has a value between X, and (X, +dX,) and that simulta-
neously X,(#) has a value between X, and (X,+ dX,) at the instant ¢,. In
analogy with (2.1) the joint probability dP may be then written

dP=f(X,,Xpt,)dX,dX, (2.9)

and f(X,,X,,t;,) is called the joint probability density function for the
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variables X, and X, at the instant ¢,. Usually
F(Xy, Xty +0)=f(X, X5 1)) = f (X, X;) (2.92)

for all values of ¢; the noise process is then said to be stationary.
The normalization condition is now

fff(X,,Xz)XmdX2=l (2.10)

and averages are defined in the same manner as for single variables, that
1s,

XTX7 = f f XIXIf (X, X, )dX,dX, (2.11)

where the integration extends over all values of X, and X,.

Usually X, =X,=0; the most important averages are then X2, X7, and
X,X,. If X,X,=0, the quantities are said to be uncorrelated; if X,X,#0,
the quantities are said to correlated; the parameter

XX,

—— i (2.12)
(x?-x3)

c=

is called the correlation coefficient. Applying the fact that (aX,+ bX, 22>0
for all values of a and b, it can be shown that —1< ¢ < 1. The case |c|=1
is called full correlation; the case |¢| <1 is called partial correlation.

The considerations are easily extended to m variables X, X,...X,, or to
discrete variables n,,n,...n,,. The definitions are similar to the two-variable
case.

If two random variables X () and Y (z) are partly correlated, namely if
|e| <1, then one can split Y into a part aX that is fully correlated with X
and a part Z that is uncorrelated with X. That is, we may write

Y=aX+Z (2.13)

where X=Y=Z=0 and XZ=0. Since XY =aX 2 and Y2=(a?X2+Z?), we
have from the definition of ¢
72 1/2

a=c Z?=Y2(1-¢% (2.13a)

X2

These formulas are useful in the discussion of noise in bipolar transistors
and FETs.



Autocorrelation and Crosscorrelation Functions

2.2 AUTOCORRELATION AND CROSSCORRELATION FUNCTIONS

A particularly useful case of two partly correlated variables occurs when

X,(1)=X (1) and X,(r)= X (1+s). Then the joint probability density func-

tion f(X,,X,) can be introduced and averages can be defined in the usual

manner. The average X,X,=X (1)X (t+s5) is called the aurocorrelation

function; it measures how long a given fluctuation persists at later times.
The autocorrelation function has the following properties

1. X (r)X (t+5s) is independent of ¢ if X (¢) is stationary.

2. X (1)X (t+ys) is either continuous or a § function in 5. If X (£)X (¢+5)
is not a & function in s, then any discontinuities in X (#) and X (z+ s) occur
at different instants for different elements of the ensemble so that they
are averaged out in the averaging process. As a consequence X (¢)X (¢+s)

= X2 (1) for s=0, unless the autocorrelation function is a 8 function in s.
3. X(1)X(t+s) is symmetrical in s, if X (7) is stationary. The reason is as
follows:

X)X (t+s)=X(u—s5)X(u) = X(u)X(u—s)=X(t)X(t—5)

The first step comes about by putting u=(z+s). The second step is an
interchange of terms. The third step involves replacing u by #, which is
allowed since X (7) is stationary.

4. For s—o0, X (£)X (t+s) goes to zero sufficiently fast, so that
[ —
f | X (D)X (1 +5) | ds (2.14)

exists. This is the case for all practical noise sources, except perhaps flicker
noise.
5. The correlation coefficient

. XX, X ()X (1+5)
c(s)= = —
(xixt X

(2.15)

is called the normalized autocorrelation function; it exists if X (¢)X (1+s)
is not a § function in 5. Here we have made use of the fact that X () is

stationary, so that )TE=X22=X2.
In the particular case of two partially correlated quantities X (¢) and

Y (1) one can introduce the autocorrelation functions X (¢)X (t+s) and
Y(t)Y(t+s) and the crosscorrelation functions X (1)Y (1+s) and
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X (t+5)Y (¢). The first are symmetrical in s, whereas the latter are usually
not. Moreover, the crosscorrelation functions, although related, are not
identical. We have in analogy with the case of a single variable

X ()Y (1+5)=X(u—s)Y(u) = X (1—5)Y () (2.16)

X(i+9)Y () =X (u)Y (u—s5) = X (1) Y (1 —>3) (2.16a)

In each case the first step replaces (¢ + s) by u and the second replaces u by
t. The latter is allowed if the noise processes are stationary.



