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Preface

Linear algebra is deeply rooted in analytic geometry and the theory of
systems of linear equations. Until the last twenty or thirty years, students
were first introduced to some of the concepts of linear algebra in courses on
analytic geometry and the theory of equations. When they were subse-
quently exposed to an abstract presentation of linear algebra they were
equipped to deal with it because they were already familiar with some of the
concrete problems that gave birth to the subject.

Recently, all of this has changed. Analytic geometry has been integrated
into courses on the calculus. This has resulted in a substantial increase in
the amount of material that needs to be covered in calculus courses. And if
material needs to be omitted because of time constraints, it is usually the
material on analytic geometry. Also courses on the theory of equations have
long since vanished from the curriculum. Thus most students enter a course
on linear algebra equipped only with some elementary facts about vectors in
R? and R?. Although vectors certainly provide some motivation for studying
abstract vector spaces, it is not enough. Students do not see the need for
such abstract concepts as linear independence, spanning, bases, and dimen-
sion arising simply out of the study of vectors in R? and R>. However, they
do see the need for these concepts arising out of concrete problems in
analytic geometry and systems of linear equations. For these reasons we feel
that most students will learn more abstract linear algebra from a concrete
approach based on the theory of linear equations and analytic geometry
than they would from the (now traditional) abstract approach.
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Preface

In view of these remarks, we chose as our point of departure the theory of
systems of linear equations. In Chapter 1 we completely develop the
Gaussian elimination process and thereby teach the student how to solve
any system of linear equations. This chapter is also the natural place to
introduce vectors and matrices in order to represent systems of equations.
(The material in this chapter should be covered as rapidly as possible.) In
Chapter 2 we use concrete problems concerning linear systems to motivate
the abstract concepts of linear algebra (in n-dimensional Euclidean space
only). We also stress the interplay between these concepts and the geometry
of two- and three-dimensional space. In Chapter 3 we again return to the
theory of linear systems, but this time use inconsistent systems to motivate
the need to extend the concepts of léngth and angle to higher-dimensional
spaces. Chapter 4 (which requires calculus and may be omitted) extends the
concepts of Chapters 2 and 3 to the function space setting. Chapter 5
introduces the notion of a linear transformation and discusses the relation-
ship between these transformations and matrices.

It is not until Chapter 6 (which may be omitted) that we finally give an
abstract definition of a vector space and an inner product space. The
student should at this point be prepared to appreciate how these definitions
provide a single conceptual framework for dealing with problems in linear
algebra.

In Chapter 7 we briefly discuss determinants and their relationship to the
geometry of space. Eigenvalues and eigenvectors are discussed in Chapter 8.
Our discussion leads naturally to the problem of diagonalizing a matrix and
the spectral theorem for symmetric matrices. In Sections 8.7 through 8.10
(which require calculus and may be omitted) we apply the theory of linear
algebra to systems of differential equations. Finally, in Chapter 9 we discuss
some numerical techniques that are useful for solving problems in linear
algebra with a computer.

The instructor should note that the text deals exclusively with real vector
spaces. Except for a brief remark in Chapter 8, all matters concerning
complex numbers are left to the appendix. In the appendix, we define
complex numbers and develop their arithmetic. We then point out (via
examples and exercises) that all of the material in Chapters 1 and 2 extends
to C” with no change. After motivating a definition of an inner product on
C" we show (again via examples and exercises) that the material in Chapter
3 extends to C” with no change. The extension of the material in Chapter 8
to C” (where it belongs) now follows immediately.

The applications that are presented are an important part of the text.
They provide the student with a sense of the vast scope and rich nature of
the subject. We believe that the theory and applications of linear algebra
illuminate each other. Not only does a knowledge of the theory help one to
understand the applications, but a knowledge of the applications helps one
to understand the theory. The applications that we have chosen are real, not
artificial. They are taken primarily from biology, economics, sociology,
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circuit theory, and data analysis. Each example is carefully motivated,
explained, and developed.

Every linear algebra text must contain exercises. They are vital because it
is through working the exercises that the student actually confronts the
subject and completes the learning process. Exercises will be found in the
textual material to encourage the student to read the book in an active
rather than passive manner. The problems at the end of each section begin
with some fairly routine exercises. More substantial problems follow these.
To assist the student, answers for computational exercises and for those
problems marked with an asterisk are provided at the end of the book. All
problems involving calculus are so indicated.

Since we have found that at this stage most students find set theoretical
notation and the sigma notation more of a hinderence than a help, we have
avoided their use in the text. We have also avoided using mathematical
induction.

The book is organized so that it may be used for both a calculus-based
and a non-calculus-based course. Only a very basic understanding of
calculus is required for a calculus-based course. If calculus is not required,
Chapter 4 and Sections 8.7 through 8.10 must be omitted. In the remainder
of the book, the few problems and examples that require calculus are clearly
marked.

Although we believe that there are strong pedagogical reasons for cover-
ing the topics in the book in the order in which they are presented, the
instructor does have many options. For example, after covering Chapters 1,
2, and 3 there are essentially five options available: Chapter 4; Chapter 5;
Chapter 6; Chapters 7 and 8; Chapter 9. We have noted the exact depen-
dencies in the following chart.

Chapters 1,2, 3

i
oo

Chapter 4 Chapter 5 Chapter 6 Sections 7.1, 7.2 Sections 9.1-9.3
Sections 8.1-8.5
Section 8.6 Section 9.4

Sections 8.7-8.10
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Chapter

Systems of Linear
Equations and
Gaussian Elimination

Linear algebra is a subject of crucial importance to mathematicians and
users of mathematics. Applications of linear algebra are found in subjects as
diverse as economics, physics, sociology, and engineering. Workers in these
fields, as well as mathematicians, statisticians, computer scientists, and
management consultants, use linear algebra to express ideas, solve prob-
lems, and model real activities.

Linear algebra has its beginnings in the study and solution of systems of
linear equations. Before studying linear algebra as an abstract mathematical
subject, it is necessary for the student to have some understanding and
appreciation of the concrete origins of the subject. We therefore devote this
introductory chapter to the theory of systems of linear equations, introduc-
ing necessary terminology and notation as well as describing applications
and techniques for computation. We recommend that the material in this
chapter be covered as rapidly as possible. Some or all of the applications in
Section 1.8 may be postponed until Chapter 8.

1.1 SYSTEMS OF LINEAR EQUATIONS

The equation y = mx + b is familiar to mathematics students as an equa-
tion that represents a nonvertical straight line. It is an example of what we
call a linear equation. A linear equation in the two variables x, and x, is an

1



2 Systems of Linear Equations and Gaussian Elimination

equation that can be written in the form
ax, +a,x, = b,

where a,, a,, and b are numbers. In general, a linear equation in the n

variables x|, x,,..., x, is an equation that can be written in the form
alxl + azxz + T +anxn = b,
where the coefficients a,, a,,..., a, and the constant term b are numbers.

We adopt the usual notation of using subscripts because this makes it easier
to understand and manipulate equations involving several variables (and we
do not have to worry about running out of letters). The following are
examples of linear equations:

x; + Tx, =3, x,~3x2+x4=5,
0.5x, =3x, — 7, Xyt xy+ o +x, =4

Some examples of equations that are not linear are:

1
xi+xx; =5, x—l+x2+x3=7,
1 x; +x
(X|)+ - _ g: + 7.
¢ 2T Xyt x, O L

Any equation that contains a power of a variable (x/, where r # 1) or a
product of two or more variables (e.g., x,x ;) is not a linear equation.

A solution of a linear equation is a collection of values for the variables
such that when these values are substituted for the variables, the equation is
true. For example, a solution of x; + x, =0 is x, =0, x, = 0. Another
solution of this equation is x, = 1, x, = ~1. Solving a linear equation
involves finding values (numbers) for the variables that make the equation
true. Since these values are initially unknown, we often refer to the variables
as unknown quantities or unknowns. “Variable” and “unknown” are inter-
changeable terms.

EXERCISE 1 Verify that the indicated values are solutions of the given linear
equations.
@ 3x; +2x, =1, x=1x,=2
(b) 3x, + 2x, =17, X =—3x,=8
© x,— x,=15, X, =2,x,=—3

Frequently, we have more than one equation involving the same variables.
For example,

x+ x,+ x;=4 .
3y =2x, + 2x,=6 (1)

is a system of linear equations in the three variables x,, x,, and x4. This
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system has two equations and three unknowns. In general, a system of linear
equations (also called a linear system) in the variables x,, x,,..., x, consists

- of a finite number of linear equations in these variables. The general form of

a system of m equations in # unknowns is

apx; + apxy, + -0+ apx, = b
ale) + azzxz + A + aznxn = b2

AuX| tax,+ - +a,x, =85,

We will call such a system an m X n (m by ») linear system. The double
subscripting of the coefficients has been arranged so that the first subscript
refers to the equation and the second subscript refers to the variable. In
other words, a;; is the coefficient of x; in the ith equation. In (1), a,, = 1
and a,, = 3. Similarly, b, is the constant term in the ith equation. In (1),
by, =4 and b, =6. Note also in (1) that m =2 and n = 3. We can
determine m and » (once we are given the system of equations) by counting
equations and variables, respectively.

EXERCISE 2 Given the linear system

4x, +2x, — 3x;+4x,= 2
Sx; — 3x, 4+ 4x; — 2x, =—7
X+ x,— x;+ 3x, 2.

I

What is the value of a;,? of a,,? of a,,? of a,,? of b,? This is an m X n
system. What do m and n equal?

It should come as no surprise that a solution of a system of linear
equations is a collection of values for the variables which makes all the
equations true. When these values are substituted for the variables, every
single one of the equations is a true statement. System (1) has x, = 2,
X, = 1,x3=1as asolutionbecause2 +1+1=4and3-2—-2-1+2-
1 = 6. (The student who is actively reading this book should have just asked
if there are any other solutions. Are there?) However, x, =4, x, =0,
x3 = 0 is not a solution of system (1) despite the fact that it is a solution of
the first equation of the system. Since 3-4 — 2.0+ 2.0 = 12 # 6, these
values do not satisfy the second equation and thus cannot be a solution of
the system.

EXERCISE 3 Which of the following are solutions of system (1)?

@x;=Lx;=1Lx;=1
®B)xy=~2,x=0,x,=6
©x=Lx,=1,x3=2
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A system of linear equations may not have any solutions. For example,
consider the system

x;+ 3x,=17
x; + 3x, = 24.

If this system were to have a solution, 17 would have to equal 24, since both
are equal to x; + 3x,. This equality is clearly impossible. A linear system
that does not have any solutions is called inconsistent. A linear system that
does have solutions is called consistent.

EXERCISE 4 Find a value for b such that the following system is inconsistent.

2x, +3x,=4
4x, + 6x,=b

In the next section we discuss applications of linear systems in several
disciplines.

PROBLEMS 1.1

*1.

*3.

*S.

Which of the following equations are linear?

(@) 3x, —2x, + x,=0 () 2x; +3x,+x,=x;~ 8
©) x1x, +x3=2 (d) 2x, + x3— x;=x,
(e) e = X4 B x,+x;—x5=4
X3
. Identify the linear equations.

(@ 3x=5y—z (b) 5x,=3x,—1
€ x,+x;,=0 (d) log(x,) =4

1 = _ 2%
(e) x, + x5 52 ® Y.

Which of the following are solutions of the equation 2x, — 5x, + x; = 3?
@x=1Lx,=—-1,x3=-3 (b) x, =10, x, =25, x; = —45

2 5 2
(c)x1=l,x2=-1,x3:—4 (d)x,=-§,x2=—§,x3=~§

. Which of the following are solutions of the equation 3x; — 2x, + 4x, + x, =

0?

(@ x,=Lx,=Lx3=1,x,=4
) x,=L,x,=2,x3=1,x,=3
©x=2%x,=lLx3=—1x,=0
D xi=2,x,=1,x3=—1,x,=1

Determine which of the following are solutions of the system

xl+2x2*-2x3=3
—x,+ xl‘"SX3:0
3x,+ 3x, + x;3=6.

*Asterisks indicate problems which have answers in the answers section.
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*8.

*10.

11.

12.

@ x,=1,x,=1,x;=0 ® x=—7,x,=8 x;,=3
© x=9x,=0x;=3 d) x,=3,x,=0,x;=0
@© x,=9x,=—6,x3= -3 ® x=4Lx=2,x3=2
. Determine which of the following are solutions of the system

3xy —2x; —3x3 — 2x,= —1

X+ x;3— x5+ x4= 8

2x,+ 3xy+ x4 = 21
@Dx=Lx;=Lx3s=1x,=—1
®x=5x=3,x;=2,x,=2
(C) xl:2,X2:6,X3:_1,)C4:_1

@ x=0,x=-2,x;=1Lx,=1

. Explain why the system

Xt x,+2x;=1
3, +3x, + 6x3= 2
cannot have any solutions.

Find three different values for b that will make the following system incon-
sistent.

x+ x,+2x;,=1

3x, +3x,+ 6x;= b

. For which values of & will the following system have solutions?

x,+2x,— x;3=4
2x) +4x, —2x;=b
Given the system
2x,+x,— x;=4
X, — x5 +3x;=2,
find an equation with the property that when it is included in the system the
resulting system of three equations is inconsistent.

Verify that an infinite number of solutions of the system

3x1—2xZ_3X3—2X4:_1
X+ x;— x3+ x4= 8
2x; + 3x, + x5 = 21

isgivenby x; =3 +¢,x, =5 —t, x3 = x, = t, where ¢ is any number.

Verify that an infinite number of solutions of the system

X, +x;+ x4= 7
x, +x, — x,= 4
.X2 —x3 - 2.X4 = _3

isgivenby x, =2+t—5,x,=3—t+2s,x;=4—1,x,=1+s5, where s

- and ¢ are arbitrary numbers.
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13. Verify that a solution of

anx; +apx; =b

anx; +apx;, =b

is given by

_ biay — by,
X ==

aay — apay

_ auby —ayb
,= R oAt

a)1a;3 — 434y,

provided that @, ,a,, — a;,a,, 0.

1.2 SOME EXAMPLES OF SYSTEMS OF LINEAR EQUATIONS

Most students of high school algebra have been subjected to problems such
as this:

Find three numbers whose sum is 20 and such that (1) the first plus twice
the second plus three times the third equals 44 and (2) twice the sum of the
first and second minus four times the third equals — 14. [This problem is found
(together with 19 others involving digits, water tanks, boats, work, and freight
trains) in H. B. Fine, 4 College Algebra, Ginn & Co. 1904, pp. 150-152.]

This problem is equivalent to finding the solution of the following system
of linear equations (where x,, x,, and x, are the three numbers we are
trying to find).

X+ x,+ x3= 20
Xy +2x,+ 3%, = 44
2x, +2x, —4x, =—14

Problems such as this, although of interest to professional (or habitual)
problem solvers, are not important applications of linear equations. They
give practice in translating English into the language of mathematics as well
as practice in computation but do not give the student adequate motivation
for studying the mathematics that is being used. In this section we give
several practical and important examples where systems of linear equations
arise naturally.

Electric Circuits

Most people think of electricity as something that “flows” through wires.
Indeed, it is usually convenient to think of electricity as electrons flowing
through wires. When we think of something flowing we naturally think of
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/2

|
A + 1
Figure 1.1

the “pressure” behind the flow and the “quantity” of substance flowing. For
electrical circuits, the “pressure” behind the electrons is measured in volts
and the “quantity” of electrons flowing, called the current, is measured in
amperes or amps. For the sake of simplicity we will consider only direct-
current (dc) circuits, circuits in which the electricity travels in one direction
in each wire.

Let us consider the electric circuit given by Figure 1.1. This circuit has
four junctions, places where many wires come together (J,, J,, J;, and J,).
There are also six branches with currents I}, I,,..., I, and one source of
electricity in the branch from J, to J,. Each branch of this circuit has been
(arbitrarily) assigned an arrow indicating a direction of flow. The actual
direction of flow will be given by the sign of the current in that branch. A
positive current will mean a flow in the direction of the arrow; a negative
current will flow in the opposite direction.

We can use an ammeter to measure both the direction and the amount of
current flowing in each wire of this circuit. If the currents in all the wires
that come together at a junction are added, it is found that the sum is zero.
This is not too surprising—it expresses the fact that the substance (the
electrons) which is flowing is not being created or destroyed at the junction.
In brief, what goes in must equal what comes out. This is one of two basic

"laws regarding electric circuits which were first formulated by G. R.
Kirchhoff in 1845.

At Jy; we have [, amps flowing in and 7, + I, amps flowing out. By
Kirchhoff’s law, I} — I, — I; = 0. This is a linear equation with currents as
the variables. There will be one equation for each junction. Looking at all
four junctions we get the following four equations.

1, -1, -1, =0 (junction J))
I, —1,—1I =0 (junction J;)
L+, —Ig=0 (junction J;)

—1, +I,+I, =0 (junction J,)



