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PREFACE

The principal objective in writing this textbook for a first course in heat transfer
is to present a rigorous and refreshing treatment of the subject, and to relate
heat transfer to other disciplines, in particular, thermodynamics and fluid me-
chanics. This book is about “modern”’ heat transfer, that is, it is intended to
reflect the changes currently taking place in the engineering profession and in
engineering education.

Engineering Design

Engineering work and research are driven not only by human curiosity but also
by the real needs of our society. For this reason, this book emphasizes design, or
the synthesizing of two or more issues (i.e., engineering disciplines) into an
answer with a practical meaning. The student is called on to recognize that there
is more than one way in which to design a heat transfer apparatus—and to
understand that knowing the worst design (the greatest pitfall, or trap) is often
as important as knowing the optimal solution and all of the other options in
between.

Design questions are drawn from many diverse areas. They include, for
instance, insulations for walls with nonuniform temperature, insulations that
must provide mechanical rigidity and support, the safe disposal of hot ash, the
stabilization of superconductors, optimal packing of fibrous insulation, fins
subjected to material constraint, and several applications covering the packag-
ing and cooling of integrated electronic circuits. Each design question is pre-
sented in a fundamental way, so that (1) the answer can be used in more than
one application, and (2) the work of arriving at the answer has the greater
educational value.
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Interdisciplinary Approach

This book teaches heat transfer as a discipline that works hand-in-hand with
other disciplines in the evolution of a process, or in the successful performance
of a device. Throughout its discussion emphasizes that real applications tend to
be interdisciplinary, and that good work requires a solid foundation in all of the
compartments of engineering education. The material presented in the chapter
discussions and in the problems at the end of each chapter illustrates exten-
sively the interfaces between heat transfer and other disciplines, such as metal-
lurgy, structural mechanics, tribology, electrical engineering, superconductivity,
cryogenics, and solar and geothermal energy production.

The emphasis of this book on the interdisciplinary character of real-life
thermal engineering, however, does not detract from the teaching of heat
transfer first as a self-standing discipline, that is, a field with its own scope,
language, and rules. Interdisciplinary engineering can only be practiced by the
engineer who is solidly grounded in the fundamentals of each discipline. To
gloss over the fundamentals in the quick and currently popular pursuit of
“interdisciplinary” topics would be to promote shallowness in the name of
erudition and modernism.

Student Oriented

Early in my career, I discerned a need to present a course that treats each
student as an intelligent human being, regardless of his or her background or
aspirations. In this book, my goal is to reach simultaneously the curious, who
are attuned to asking more questions, and the pragmatic, who prefer to get on
with their calculations based on well-defined formulas.

Relationship to Fluid Mechanics, Thermodynamics,
and History of Engineering

The book stresses the importance of fluid mechanics as a prerequisite for heat
transfer analysis. To understand the flow configuration and its regime (laminar
versus turbulent) is tremendously important not only in convection heat
transfer calculations but also in conjugate situations in which convection is
accompanied by conduction and radiation.

The role of thermodynamics in heat transfer is presented with great care.
This begins with the calorimetric terminology, which is shared by both disci-
plines, and continues with the thermodynamic meaning of heat transfer engi-
neering concepts, such as natural (“free”’) convection, heat exchanger pressure
drop, and solar collector optimization.

Throughout the book I explain where each concept and formula comes from.
In many instances, I provide the history of the concept and, sometimes, even
the origin of the words that are used to name that concept.

Scale Analysis

This book makes a strong case for the use of simple and approximate analyses.
Special emphasis is placed on order-of-magnitude calculations, or “’scale analy-
sis.” I previously used this method in my graduate text on Convection Heat
Transfer (Wiley, 1984). Since then, I have found that scale analysis can play an
even greater role in a first course on heat transfer, where it can be used to solve



PREFACE ix

conduction problems in addition to those of convection. Approximate methods,
such as scale analysis and integral analysis, are emphasized because of their
high rate of “return on investment.”” This has always been a central objective in
engineering practice.

Problem-Solving Material

The emphasis on physical understanding and the freedom to choose between
exact and approximate calculations is reflected also in the problem-solving
material included in this course. The simplest problems are presented in the text
as worked out examples, whereas the more challenging ones are proposed as
problems at the end of each chapter. In later chapters, the projects that follow the
problems require more time to solve. These projects usually have greater design
content, and may be developed by the instructor into homework of longer
duration.

It is always a good idea to begin solving a problem by executing a good
drawing, and I have tried to demonstrate this to the student. Making a good
drawing requires the student to explain to himself or herself the physics of the
problem. Learning to take this preliminary step will be a benefit in the student’s
future career in engineering. The Solutions Manual that accompanies this book
reflects the same care for problem solving (explanations, details, graphics) that
is exhibited throughout the text. I wrote the solutions manual myself, as a
“second book” in both content and appearance.

Looking Back at the Last Four Years

I am extremely fortunate to be and work at Duke University, which has pro-
vided me with a very friendly and supportive environment and, above all,
freedom. It is a rare privilege to be allowed the freedom to think one’s own
thoughts.

Mary, my wife, was once again my chief collaborator and counselor. I owe
every bit of my progress to her. Our family was also very supportive and a
steady reminder of what is really important. I am deeply indebted to my
parents-in-law, Terry Riordan and the late Bill Riordan, who actively supported
my work, laboratory, and students.

Linda Hayes typed the entire manuscript while improving its English and
organization. She also prepared the Solutions Manual on the word processor so
that the manual, too, has a professional appearance. Her exquisite work is an
important part of this finished project. I am very grateful to her for all of her
help.

Several of my colleagues and students helped me during various stages of
this project. I thank Katherine McKinney, Kathy Vickers, Dianne Himler, Eric
Smith, Stoian Petrescu, Peter Jany, Dimos Poulikakos, John Georgiadis, Ira
Katz, Michael Kazmierczak, P.V. Kadaba, Ab Hashemi, M. V. Vazquez, Ulrich
Gosele, Sang W. Lee, Sung J. Kim, Jose Lage, Jong Lim, Alexandru Morega, and
Alex Fowler. I treasure their support. I also appeal to the readers to communi-
cate to me any errors that may persist in this final version.

Adrian Bejan
Durham, North Carolina
May 1992
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(5.39)

average skin friction coefficient,
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turbulent Prandtl number,

Pr, = &y /en

partial pressure of component i
(N/m?)

heat transfer rate (W)

total heat transfer rate through
the fin (W)

heat transfer through the tip of
the fin (W)

heat transfer rate per unit length
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heat flux (W/m?)

volumetric rate of internal heat
generation (W/m?)
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one-way heat current (W) from 1
to 2

net heat current (W) from 1 to 2
heat transfer (J)
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function of r only, Chapter 3
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Appendix D
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Appendix A
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eq. (11.102)

Rayleigh number based on
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Rayleigh number based on heat
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Re
Rep

Re,

Sc
Sh,

St

Ste

Reynolds number V,,.D, /v, eq.
(9.70)

Reynolds number based on
diameter, U,D/v, UD/v

local Reynolds number, Appendix
F

Reynolds number based on
longitudinal length, U.x/v
condensate film Reynolds
number, 41°(y) /1, eq. (8.22)
internal radiation resistance
(m™2), eq. (10.78)

radition thermal resistance (m™2),
eq. (10.45)

thermal resistance (K/W), eq. (2.8)
empirical constant, Table 8.1

dimensionless characteristic
values, Table 4.2

conduction shape factor, eq.
(3.33) and the header of Table 3.3
entropy (J/K)

solubility coefficient

(kmol/m?- bar), Table 11.6
Schmidt number, Sc = v/D
local Sherwood number, eq.
(11.65)

x-independent Stanton number
h/pcsU

Stefan number, eq. (4.119)

local mass transfer Stanton
number, eq. (11.85)

local Stanton number h,/pc,U..
thickness (m)

time (s)

transition time scale (s), eq. (4.9)
temperature (K or °C), egs. (1.5)
and Fig. 1.2

base temperature in fin analysis
(K), Chapter 2

bulk, or mean temperature (K or
°C)

center temperature (K), Chapter 4
initial temperature (K)
temperature of the control

volume surrounding the node (i, j),
Chapter 3

mean, or bulk temperature (K),
eq. (6.33)
melting point temperature (K)
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wall temperature (K or °C)
surface temperature (K), Chapter 4
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specific internal energy (J/kg)
velocity component in the x
direction (m/s)

average longitudinal velocity (m/s)
internal energy (J)

mean velocity (m/s), eq. (6.1)
overall heat transfer coefficient
(W/m?-K)

free stream velocity (m/s)
specific volume (m3/kg)

velocity in the y direction (m/s)
normal velocity (m/s)

mean longitudinal velocity (m/s)
volume (m?)

volume (m?), Chapter 9
mechanical transfer rate, or
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work transfer (J)

work transfer rate, or power (W)

Greek Letters

o

a;

o

B:

heat transfer area density
(m?2/m?3), eq. (9.64)

thermal diffusivity (m?2/s),
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temperature coefficient of
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Appendix B
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coefficient of volumetric thermal
expansion (K™), eq. (5.18)
composition expansion coefficient
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condensate mass flowrate per
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body forces per unit volume
(N/m?3), Table 5.1
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zeroth-order Bessel function of
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overall surface efficiency, eq. (9.4)
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€ fin effectiveness, eq. (2.118)

&y thermal eddy diffusivity (m?/s),
eq. (5.100)

Em momentum eddy diffusivity
(m2/s), eq. (5.99)

€ overall projected-surface
effectiveness, eq. (2.79)

€; monochromatic hemispherical
emissivity

€; directional monochromatic
emissivity

n fin efficiency, eq. (2.115)
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0 angular coordinate (rad), Figs. 1.8
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7 excess temperature (K), eq. (2.88)

0 momentum thickness (m), eq.
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0 similarity temperature profile, eq.
(7.46)

0 thermal potential function
(W/m), eq. (2.51)
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K von Karman'’s constant, eq. (5.112)

K; monochromatic extinction
coefficient (m™)

A characteristic value, Chapter 3

A dimensionless parameter in the
Stefan solution, eq. (4.118)

A wavelength (m)

u characteristic value, Chapter 3

U viscosity (kg/s-m), eq. (5.10)

Subscripts

( ) absorbed, Chapter 10

( ) air, Chapter 11

( Dace acceleration
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