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Preface

This book is intended as a text for an assembly language course such as CS 3: Introduc-
tion to Computer Science in the ACM’s Curriculum *78. It is also for anyone who
wants to learn about the instruction set and assembly language for the VAX-11.
The book is written primarily for readers who do not already know any assembly
language; the VAX-11 is used partly as a vehicle for teaching about features and
principles common to many large modern computers and assembly languages. The
book should be suitable for readers who are already familiar with assembly language
if some sections are skimmed. The summary sections at the ends of the chapters
include reference tables that should be helpful to both the novice and those experienced
in assembly language who want to learn about the VAX. It is assumed that the
reader is familiar with a high-level language.

The book has been organized to make the chapters easy to cover in sequence
in a class where the students begin programming early and write programs regularly
on the material as it is encountered. With this aim in mind, I introduce some
topics and instructions informally as needed before they are covered in complete
detail, and I intersperse chapters on topics that would be the subject of program-
ming assignments (e.g., branching, procedures) with chapters on topics that would
not be (e.g., machine code, assembler expressions). Topics are not divided up in
precise, logically distinct chunks as they are in manuals. For example, although loop
control instructions “belong™ in Chapter 7, “Branching and Looping,” one loop in-
struction is introduced early in Chapter 6 so that students can write a nontrivial pro-
gram.

In our one-semester course we have covered almost all of the text. A few address-
ing modes (Chapter 8), packed decimal instructions (Chapter 13), Chapter 14, and
some of the examples were skipped. (Some topics were skimmed.)

Chapters 1 and 2 are very short introductory chapters and should be covered
quickly. Chapter 3 on hexadecimal numbers and two’s complement representation
may be skimmed if that material has been covered in an earlier course.

Chapter 4 begins the presentation of machine instructions and assembly language.
The VAX has a very large set of operand addressing modes. Some of the simpler
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Preface vii

ones are described in Chapter 4, while some more complex and less commonly available
ones are left for Chapter 8.

To allow students to do simple I/O at a terminal, I have defined some 1/0
macros that can be used quite easily. The VAX Run-Time Library contains procedures
that do terminal I/O, but the macros are simpler for students to use. The macros
are READLINE, READRCRD, PRINTCHRS, and DUMPLONG. Their functional
characteristics and argument formats are described in Chapter 5, and the macro
definitions are given in Appendix D.

Students should be able to run simple programs after Chapter 5 and programs
with loops after Chapter 6. While Chapters 1 through 5 are being covered in class,
the students may be doing an assignment to gain familiarity with their timesharing
system and editor. If the first few program assignments use primarily character data
and if hex output from DUMPLONG is acceptable for a small amount of numeric
output, the somewhat complex conversion between two’s complement and character
code for input and output, covered in Section 6.5, may be delayed in order to cover
sooner some material on conditional branching from Chapter 7.

In some ways Chapter 8, “Machine Code Formats, Translation, and Execution,”
is the most important chapter, even though it has little to do with programming.
Here, probably for the first time, students will begin to see how a computer actually
executes instructions and how assembly language statements are translated.

Chapter 8 follows the chapter on branching and looping so that students can
begin writing nontrivial programs early in a course. However, since they will see
machine code on their program listings and will need to understand a little about
instruction formats and execution to interpret and correct errors, it would be a good
idea for the instructor to present some material from Chapter 8 (particularly Section
8.8, which explains some of the execution-time error messages) before completing
Chapter 7. This is what we do in class, but it seemed awkward to break these chapters
up into smaller, intermingled pieces.

Chapter 9 considers the problems involved in communicating between procedures
and the programs that call them. It describes several techniques used for solving
those problems but focuses mainly on the VAX procedure calling standard. A short
section is included on the VAX conventions for linking assembly language with other
languages. The information in this section should suffice for many straightforward
situations, but it does not cover all argument types.

Chapter 10 presents more about the assembler (and linker): mainly the treatment
of expressions and the distinction between absolute and relocatable expressions.

The VAX macro facility is not a particularly powerful or elegant one, but it
does include many of the standard features such as argument concatenation, local
labels, and a variety of conditional assembly directives. Some of these features and
some general points about writing macros are presented in Chapter 11.

Chapter 12 presents the bit and logical instructions and includes a section on
the VAX variable length bit field data type and instructions.

The floating point and packed decimal data types and instructions are presented
in Chapter 13. The accuracy problems in floating point computations are illustrated.

Chapter 14 describes the character string manipulation instructions, including
search, translate, and edit instructions.
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Chapter 15 is a brief introduction to the VAX-11 Record Management Services.
It will enable the reader to do some I/O without using the macros presented in
Chapter 5. A more detailed discussion of 1/O devices and operations would involve
a lot of discussion of operating systems, so I have chosen not to include that in
this book.

The book does not describe all the instructions in the VAX instruction set or
all the assembler directives. Some instructions (e.g., quadword arithmetic) are intro-
duced only in the exercises. The VAX instruction set includes some powerful and
unusual machine instructions that are designed specifically to efficiently implement
some high-level language constructs (e.g., CASE). These are not covered. (All machine
instructions are included in the instruction table in Appendix A.) It is expected that
students will be able to intelligently consult the relevant manuals to look up additional
instructions and directives. The two main reference manuals are:

VAX Architecture Handbook
VAX-11 MACRO Language Reference Manual

The following manuals may also be helpful.

VAX-11 MACRO User’s Guide

VAX-11 Linker Reference Manual

VAX-11 Command Language User’s Guide

VAX-11 Symbolic Debugger Reference Manual

VAX-11 Record Management Services Reference Manual

This book contains several hundred exercises, ranging from short answer ques-
tions to problems that are suitable for programming assignments. Appendix E contains
answers to some of the exercises from each chapter.

The type style in which the programming examples in this book were set uses
the same symbol for the capital letter “oh™ and for the digit “‘zero.” It should be
clear from the context which is meant.

Several people helped me, in small and large ways, in the preparation of this
book. I would like to thank my colleague Richard Hager for suggesting the idea of
writing the book, the many students who gave me lists of typos and errors in the
manuscript when it was being used as the text for our assembly language course,
instructors Tom Teegarden and John van Zandt for using the manuscript in their
classes, and Jack Revelle for writing the editing and formatting software I used to
prepare the manuscript, for the use of his computer, and for advice and suggestions
throughout the project. Though their contribution to this project was for the most
part indirect, several of my colleagues in the computer science group at San Diego
State helped out by being such a good bunch of people to work with, and I thank
them.

Sara Baase
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Chapter 1

Introduction

1.4 WHAT IS ASSEMBLY LANGUAGE AND WHY
STUDY IT1?

An assembly language is a programming language in which instructions correspond
closely to the individual primitive operations that are carried out by a particular
computer. These primitive operations, encoded in a form the computer can act on
directly, comprise the machine language of the computer. These are partial, informal
descriptions, not rigorous ones. Along with the following discussion and examples,
they are intended to give the reader a general idea of what assembly language *‘looks
like,” what kinds of instructions it has, and how it differs from high-level languages
and machine language. In this book we will be studying the assembly language of
the VAX-11 made by Digital Equipment Corporation (DEC for short). Each example
shows a statement in a high-level language and possible translations of it into the
VAX assembly language (called VAX-11 MACRO) and VAX machine language.

Perhaps the most glaring difference among the three types of languages is that
as we move from high-level languages to lower levels, the code gets harder to read
(with understanding). The major advantages of high-level languages are that they
are easy to read and are machine independent. The instructions are written in a
combination of English and ordinary mathematical notation, and programs can be
run with minor, if any, changes on different computers. Each computer has its compiler
to translate high-level language programs into its machine language.

Some parts of the assembly language instructions are decipherable: in Example
1.1 the variable names appear, and one may guess from their names what some of
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EXAMPLE 1.1
FORTRAN
COST = BASE + NUM*VAR
ASSEMBLY LANGUAGE MACHINE CODE
COST: BLKF 1
BASE: .BLKF 1
VAR: .BLKF 1
NUM: .BLKL 1
CVTLF NUM,R3 530DBAF4E
MULF2  VAR,R3 53D3AF44
ADDF3  BASE,R3,COST C4AF53CBAF41
EXAMPLE 1.2
PASCAL
I[F DIR<O THEN SUM :=SUM+AMNT[I]
ASSEMBLY LANGUAGE MACHINE CODE
TSTB (R2) 6295
BGEQ NEXT 0418
ADDL2 (R4)[R5].R6 566445C0

NEXT: <next instruction>

the instructions do. MULF2 does multiplication and ADDF3 does addition. The
machine code is totally unintelligible without further explanation, and one can see
that even knowing all the translation rules wouldn’t make reading or writing in
machine language an easy or enjoyable task.

The second most visible difference among the different types of languages is
that several lines of assembly language instructions are needed to encode one line
of a high-level language program. Early computers had very few instructions. The
instruction sets included such operations as integer addition and subtraction, sign
tests, branching, certain logical operations, input and output, and movement of data.
Each instruction performed one operation. (Many modern microprocessors have simi-
larly limited instruction sets.) Integer multiplication and division and floating-point
arithmetic had to be programmed using the primitive operations. Now large computers
have machine instructions that do integer multiplication and division, floating-point
arithmetic, and many more complex logical and data-manipulation operations.

Execution of the Fortran statement in Example 1.1 requires several operations:
conversion of the integer datum NUM to floating-point, a multiplication, an addition,
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and an assignment of the result to COST. In many modern computers the conversion
would require a long sequence of instructions, and each of the other operations would
be performed by a separate instruction. The VAX has a very powerful set of instruc-
tions, though; the conversion is done in one instruction (CVTLF), and the add instruc-
tion adds and stores the result. In the second example, the Pascal if statement is
translated to a sign test (TSTB), a conditional branch (BGEQ, branch if greater
than or equal zero), and an addition. On other computers more instructions might
be required to reference the array AMNT, but the VAX has very powerful and
flexible ways to refer to data.

The machine code for a whole program segment would be one continuous se-
quence in the computer’s memory; it is broken up into separate lines in each example
to show the correspondence between sections of the machine code and the assembly
language instructions. Actually, machine code is slightly worse than shown here; it
consists of a long string of bits—i.e., 0’s and 1’s. What we see in the examples is a
shorthand notation; each digit and letter represents a group of four bits. The notation
used is the hexadecimal number system. Hexadecimal numbers are used extensively
for machine code, memory addresses, and data, and will be discussed in Chapter 3.

The assembly and machine language sequences in the examples are not the
only possible translations of the Fortran and Pascal statements shown. They depend
on some assumptions about the context of the statements. In Example 1.1, for instance,
the first four lines allocate memory space for the variables, but similar lines do not
appear in Example 1.2. In assembly language, all variable names must be defined;
i.e., roughly speaking, a position in memory must be assigned to them. In many
cases it is possible to refer to variables by name as in Example 1.1 and in high-
level languages. For Example 1.2, we assumed that the statement is in a subroutine
or procedure, and DIR, SUM, and AMNT are arguments. Space must be allocated
elsewhere for the data the routine acts on, but the variable names (if any) are not
available for use here. We may not even use formal argument (i.e., dummy argument)
names as in high-level language procedures or subroutines.

The machine code contains no declarations, variable names, or statement labels
(like NEXT in Example 1.2). It contains only executable instructions; references to
data and instructions are encoded in ways to be described in Chapter 8.

In situations where programming in a high-level language is not appropriate,
it is clear that assembly language is to be preferred to machine language. Assembly
language has a number of advantages over machine code aside from the obvious
increase in readability. One is that the use of symbolic names for data and instruction
labels frees the programmer from computing and recomputing the memory locations
whenever a change is made in a program. Another is that assembly languages generally
have a feature, called macros, that frees the user from having to repeat similar sections
of code used in several places in a program. Assemblers do many bookkeeping and
other tasks for the user. Often compilers translate into assembly language rather
than machine code.

If one has a choice between assembly language and a high-level language, why
choose assembly language? The fact that the amount of programming done in assembly
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language is quite small compared to the amount done in high-level languages indicates
that one generally doesn’t choose assembly language. However, there are situations
where it may not be convenient, efficient, or possible to write programs in high-
level languages. The first compiler, for example, could not be written in the high-
level language it translates because there would be no way to run the compiler.
(Actually, nowadays, compilers are usually written in high-level languages.) Programs
to control and communicate with peripheral devices (input and output devices) are
usually written in assembly language because they use special instructions that are
not available in high-level languages, and they must be very efficient. Some systems
programs are written in assembly language for similar reasons. In general, since high-
level languages are designed without the features of a particular machine in mind
and a compiler must do its job in a standardized way to accommodate all valid
programs, there are situations where to take advantage of special features of a machine,
to program some details that are inaccessible from a high-level language, or perhaps
to increase the efficiency of a program,! one may reasonably choose to write in assembly
language.

Although assembly language programs must be translated into machine code,
the translation task is simpler than for a high-level language because of the close
correspondence between the assembly and machine language for a particular computer.
A program that translates assembly language into machine language is called an
assembler.

Some of the major reasons for studying assembly language have little to do
with its practical use as a programming language. Consider that Fortran was developed
in the 1950s when computers were made of vacuum tubes. The same Fortran program
that ran on such a machine could also run on a computer in the 1960s made of
transistors, on a computer today with integrated circuits, and on a future computer
that uses some new technology. Clearly, learning Fortran (and other high-level lan-
guages) teaches one virtually nothing about what a computer is and how it actually
works. We won’t be studying computer hardware here, but the point—that there
have been dramatic changes over the years, all virtually invisible to high-level language
programmers—is equally true about computer architecture, that is, the conceptual
structure and functional characteristics of a computer. A major purpose of studying
assembly language is to learn something about computer architecture; in fact, part
of Digital Equipment Corporation’s definition of architecture is “the attributes of a
system as seen by the assembly language programmer.” Thus, along with learning
how to write programs in assembly language, we will study the structure of the
computer, its instruction set, how it decodes and executes instructions, how data
are represented, what schemes are used to reference memory locations, and how
arguments are passed to and from procedures, or subroutines. All these topics and
others covered in assembly language texts help us understand how the computer
really works and indirectly help us understand more about the task performed by
the compilers that must translate high-level language programs.

! Optimizing compilers may eliminate this last reason, as some very good ones produce code that
rivals for efficiency the work of experienced assembly language programmers.
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Computer architecture and assembly languages differ very much from what
they were thirty years ago. There are also significant differences among computers
available today from different manufacturers, but of course they also have many
features and characteristics in common. Why study the VAX assembly language
rather than some other one? To be honest, the choice of what assembly language
to learn is usually determined by what computer is available at one’s university or
place of work, and the decision to acquire that particular machine probably depended
on many factors having little to do with the merits of its assembly language. If a
programmer must use a VAX and intends to write in assembly language, then he
or she will probably write in VAX-11 MACRO.2 On the other hand, if one’s purpose
is to learn about the architecture of a modern computer, then there are several to
choose from that would serve the purpose. The VAX is not the only choice, but it
is a very good one. As we indicated in the examples, the VAX has some instructions
and ways of accessing data that are more powerful and flexible than those of other
computers. The VAX and its assembly language also have many features that are
typical of modern machines. It has, as computer people would put it, a nice architec-
ture. Throughout this book we will often mention similarities and differences between
the VAX and other computers.

1.2 SOME TERMINOLOGY

In this section we give definitions and brief explanations of some commonly used
terms, many of which should be somewhat familiar to the reader. This is not intended
as a complete glossary, but rather as a review of some general terminology.

Data are pieces of information of some kind, often numbers or character strings.
The singular form of data is datum.

A bit is often defined as a binary digit, i.e., a O or a 1. It also may mean a
place (in a computer memory, for example) where a 0 or a 1 may be stored. In
many computers, including the VAX, bits are organized in groups of eight called
bytes. In such machines the byte is considered the basic unit of memory. Half a
byte is defined by some computer makers, including DEC, as a nibble. (Yes, computer
scientists have a sense of humor.) To complement a bit means to reverse its value,
i.e., to change a 0 to a 1 and change a 1 to a 0. To complement a bit string means
to complement each bit in the string.

A compiler is a program that translates a high-level language into assembly
language. Compilers usually provide a program listing and error messages for syntax
errors in the program being translated.

An assembler is also a translation program; its purpose is to translate assembly
language into machine language. The input to a compiler or assembler is a program
written by a programmer; it is called a source program (or source file or source
module). The primary output from the compiler or assembler is called an object

2PDP-11 assembly language programs may be run on the VAX in what is called compatibility
mode, but we will not consider that here.
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module (or object file). Like a compiler, an assembler also provides error messages
and a program listing. The listing shows the machine code produced by the assembler.

Because a program may consist of several modules or procedures assembled
separately, and because the assembler doesn’t know where in memory a program
will be when it runs, the object file is not the final machine-code translation. Another
program, called a linker, combines the various object modules and puts them in
executable form. The output of the linker is called an executable image or execution
file.

An executable instruction, in assembly language or a high-level language, is
an instruction that gets translated into one or more machine language instructions.
Other instructions appearing in a program, such as declarations and header statements,
provide information or instructions to the assembler or compiler.

As suggested above, a program goes through three stages: assembly, linkage,
and execution. When learning and programming assembly language, it is often impor-
tant to understand which operations take place in which of these stages. Thus we
will talk about an operation, or perhaps an error, occurring at assembly time or at
execution time. Assembly time does not mean the amount of time used to translate
the program, but the time span, or stage, when assembly takes place. The same is
true for execution time.

A procedure is a program section that performs a particular task on (zero or
more) arguments that are given to it when it is called by another routine. A procedure
can be assembled (or compiled) as an independent unit. (In Fortran, procedures are
called subroutines.)

We have used the term module several times. Since it is used in many contexts,
its definition is fairly vague. A module is a section of a program, as an abstract
entity or in some representation such as source or object code, treated as a unit for
some purpose. When we use the term, we will most often mean a section of assembly
language source code assembled as a unit. A module would generally be either a
main program or a procedure.

Multiprogramming means concurrent execution of several programs. The com-
puter’s CPU (central processing unit) executes only one instruction at a time, but it
is so fast that, to avoid wasting this valuable resource, several programs are kept
available in memory at once so that while one is waiting for a relatively slow operation
(maybe one that takes a few dozen milliseconds) to finish, another program may be
executing. The slow operation may involve reading data from a disk, or something
really slow: a person sitting at a terminal deciding what to do next.

An operating system is a collection of programs that controls and allocates
the resources of the computer system. It handles the scheduling of all the jobs in
the system, the communications necessary for doing input and output, and record
and file management. The standard VAX-11 operating system is called VAX/VMS.
The letters stand for Virtual Address eXtensions/Virtual Memory System.



Chapter 2

Machine Organization

A computer system generally consists of three subsystems (as illustrated in Fig. 2.1):
the memory, the central processing unit, and the [/O subsystem. In this chapter
we present an overview of their architecture, or logical structure.

2.1 MEMORY AND DATA ORGANIZATION
Physical Memory

The physical memory, also called main memory or main storage, of a computer is
where instructions and data that the processor can directly fetch and execute or
manipulate are stored. The VAX uses MOS (metal oxide semiconductor) memory,
which consists of chips containing thousands of tiny electric circuits each of which
may be open or closed at any time. One state is taken to represent O and the other
to represent 1. In the past, computer memories have been made of other materials,
including, for example, magnetic rings, called cores, that could be magnetized in one
of two directions, and thus also could represent one bit. In the VAX (and many
other computers) the bits are logically grouped in units of eight called byzes.

On the VAX-11/780 it takes an average of a little under 300 nanoseconds to
transfer an operand from memory to the central processor. On the VAX-11/750 it
takes about 400 nanoseconds. (One nanosecond is 1079 second.) To achieve access
times this low, both the 780 and the 750 use a special high-speed memory, called a
cache, where they store what they are currently working on.



8 Machine Organization / Ch. 2

Central processor (CPU)

General registers
PSL & other special

registers ;
Arithmetic and logic
units
Memory Input/Output
e
\ Disks
Terminals

Printers

The arrows indicate that information is transferred between the three subsystems.

Figure 2.1 The subsystems of a computer

A VAX-11/780 may have up to eight megabytes (roughly eight million bytes)
of main memory; a 750 may have up to two megabytes.

The Logical Structure of Memory

Conceptually, memory consists of a sequence of bytes numbered from O to the maxi-
mum available in the given installation. The number of a byte is called its address.

The bits in a byte are numbered right to left, beginning with 0. Thus the right-
most, or least significant, bit is bit number O and the leftmost, or most significant,
bit is bit number 7. The bits are numbered right to left so that the bit number is
the power of 2 represented by that bit when the datum is interpreted as a binary
number.

Since each bit may have one of two values, O or 1, 256 (28) configurations are
possible in one byte. A byte may be used to store a character or a small integer.
(Characters are encoded in seven bits; the eighth, or leftmost, is always zero.)

Bytes are too small a unit of memory for storing large integers or floating-
point numbers. They are grouped in various ways to provide larger units of storage



