Basic Concepts
of Mathematics
~ BUSH and OBREANU




Basic Concepts
of Mathematics

GEORGE C. BUSH
PHILLIP E. OBREANU

Queen's University, Kingston, Ontario

Holt, Rinehart and Winston
New York—Chicago—San Francisco—Toronto—London



Copyright © 1965 by Holt, Rinehart and Winston, Inec.
All Rights Reserved
Library of Congress Cataldg Card Number: 65-14883

21183-0115
Printed in the United States of America



Basic Concepts
of Mathematics



Preface

The flood during the last few years of elementary college mathematics texts
with titles containing the words ‘“basic,” ‘‘fundamental,”” ‘““modern,” or
“abstract’’ is a clear indication of the shift in emphasis in the undergraduate
program in mathematics. These books serve various purposes and require
various backgrounds. Since there is such a variety of content despite the
similarity of titles, it is in order to give some explanation of the content of
the present work.

The material presented has been developed from a course that was
originally designed for first-year students in mathematics or physiecs who
had taken ‘“college’” algebra, two-dimensional analytic geometry, and plane
trigonometry in their last year of high school and that was then broadened
to include a much greater variety of students. The course has also been
taught in the summer school to a class consisting largely of teachers who
were seeking a higher professional classification.

The purpose of the book is to lay a suitable foundation for later mathe-
matics courses. Accordingly we have dealt with the basic concepts of a
number of branches of mathematics rather than developing any one of them
in great detail. While the scope is broad, the language of sets, relations, and
functions provides a unifying thread.

We have departed from the current trend to start such a study with the
propositional calculus and truth tables. We have chosen instead to give an
informal discussion of the logical arguments used in mathematics. We believe
that this is more meaningful and more important to the student at this level.

Although we introduce the concept of the quotient set, we do not make
extensive use of it since experience has shown that this is a difficult idea for
the student to handle. For this reason we do not discuss quotient groups or
quotient rings. We also choose to introduce real numbers as infinite deci-
mals, a procedure that has intuitive advantages for the student, although it
may seem cumbersome to the expert.

The concept of a vector is introduced geometrically. We chose this
approach rather than using ordered triples because it has more intuitive
appeal, especially in the application of vectors to problems in geometry,
even while we recognized the disadvantages from an axiomatic point of view
since we cannot assume that the student has a proper axiomatic basis even
for two-dimensional geometry.

In Part Four, we have emphasized the conceptual rather than the
computational aspects of the calculus. This emphasis is in keeping with the
rest of the material; a mathematics major would receive a course concentrat-
ing on the calculus and would need only a brief indication of the set theo-
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vi PREFACE

retical background of the subject. Thus, Part Four is not an attempt to
duplicate a calculus text.

In several places, particularly in examples, we have depended rather
heavily on the reader’s intuition. We have chosen this rather than a more
rigorous presentation when we felt that it would aid the student’s under-
standing of the material.

The book could be covered entirely in three semesters, or it offers a
variety of two semester courses. We have used the material of Parts One.
Two, and Three since our students were taking a concurrent calculus course,
The first seven chapters are prerequisite to the later chapters (although they
could be abbreviated). After Chapter 7 it is possible to begin at Chapters 8,
10, or 12. Some of the results in Parts Three and Four are stated in the
language of groups and rings, but these require only the definition of these
structures.

A variety of exercises is included. In many of these the emphasis is on
the proof and so no short answer can be given. Answers to about one half of
the exercises that have short answers are given under the heading “Selected
Answers to Exercises.”

We are indebted to a number of people for their help in writing this
book. Professors K. Hewitt and B. W. Jones read the manuseript in detail
and offered valuable criticisms. To them we owe our special thanks. Our
colleagues who have taught from earlier versions of the work and our stu-
dents who have studied from it have pointed out various places where
improvements could be made; Mrs. E. M. Wight has patiently typed the
various versions of the manuscript. Finally, we express our gratitude to our
wives who have for many months tolerated our preoccupation with the
preparation of this material.

Kingston, Canada G.C.B.
February, 1965 P.E.O.
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Introduction
The Language of
Mathematics

As an introduction ta our study of mathematics, we shall attempt an ele-
mentary analysis of the processes of mathematical reasoning. We shall do
this by considering examples from high school mathematics and especially
from geometry. Our study is far from complete. The whole problem of
analyzing mathematical arguments belongs to the realm of mathematical
(or symbolic) logic. by dom

There are two different approaches in teaching mathematics. One, the
traditional approach that is usually taught in high schools, attempts to
start from definitions of the basic objects studied. The other, more modern,
approach accepts certain objects as undefined elements, makes no attempt
to define them, and uses them as the basis of a body of theorems and defi-
nitions. The second approach is more or less the one used in this book.

These two approaches are well illustrated in, the study of Euclidean
geometry. Euclid himself, followed by thé dutRors of many high school
texts up to the present, defined point and line as follows:

“A point is that which has no parts.” (1)
“A line is length without breadth.” (2)

The student who encounters these definitions might well ask for definitions
of part, length, and breadth. Such a quest for ultimate definition is endless.
The purpose of such definitions is to help the student to an intuitive , . .-
grasp of the subject. He is encouraged to draw from the real objects around™
him some abstract concept. This is a valid and useful approach. Intuition
is required to understand mathematical facts and to discover new ones.
The more modern approach to mathematics starts from undefined
terms and thus avoids two pitfalls. The first is the endless regression from

one definition to another, the second is the so-called vicious circle in which

two words are defined in terms of each other. It uses intuition and abstrac-
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4 LANGUAGE OF MATHEMATICS

tion from real objects only as motivation and excludes them from the
formal statement of theorems. In keeping with this modern approach, we
shall make no attempt to define such ent1t1es as line, point, or set. We con-
sider such terms primitive concepts and give certaﬁaﬁements called azioms
or postulates that express relations among these concepts. One example of
such an axion, chosen from Euclidean geometry, is

“There is exactly one line which passes through two distinet
points.”’

3)

There has been until quite recently a traditional distinction between
axioms and postulates. According to this tradition, which grew out of the
teaching of Euclid’s Elements, an axiom was a ‘‘self-evident truth’”’ without
which thought would be impossible. A postulate was not considered self-
evident but was believed to be a fundamental truth about the subject matter
being studied, a truth that was beyond question.

By the nineteenth century leading mathematicians abandoned this
distinction. They realized that the essence of mathematics is not the pursuit
of an absolute truth; in fact the idea of truth based on overwhelming evi-
dence is quite foreign to mathematics. In the new view a mathematical
theory is concerned only with proofs of the validity of statements of the
form: “If P holds, then @ holds.” In constructing such a system we start
from a few propositions which we call axioms, but we are no longer con-
cerned about whether these axioms express some truth that is beyond all
possible doubt. We shall sometimes state that “A is true,” but we interpret
this to mean only that A comes at the end of a chain of arguments of the
type “If P holds, then @ holds,” a chain that begins with one or more of our
axioms. This view frees us from the need for a priori evidence for the truth
of the axioms. It is no longer claimed that axioms represent the behavior
of the physical world.

The present view of axioms has come about as the result of study in
various branches of mathematics. The concern about the parallel postulate
of Euclid (the fifth postulate in the Elements) is typical of these studies.
In the form given by the Scottish mathematician J. Playfair (1748-1819),
this postulate is:

“Through a given point outside a given line one and only one 4)
line can be drawn parallel to the given line.”

To the followers of Euclid this postulate seemed less “self-evident”
than the others he had stated, and they attempted to find a proof for it.
This search for a proof ended when the Russian mathematician N. I.
Lobatschefski (1793-1856) constructed a geometry in which the parallel
postulate does not hold. This new geometry is one of the class of geometries
referred to as non-Euclidean. Other geometries of this class have been con-
structed and provide a model of the physical world that for some purposes
is more convenient than the geometry of Euclid.
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We shall not spend more time on the history of the axiomatic method,
which now permeates all of mathematics. The more familiar we become
with the method, the less we feel the need for explicit definitions of the
primitive concepts and the more we realize that all we need to know about
them is contained in the system of axioms. This book does not completely
adopt the axiomatic approach, but Chapters 8 and 9 come very close to it.

We introduce new objects in any mathematical system by means of
statements that we call definitions. In these definitions we use words that
we assume to be already known. Examples of such definitions are the fol-
lowing from geometry.

“The line A is said to be parallel to the line B if A and B have

no common point.” ()
point.

“By a segment ab we mean the set of all points of the line passing ©6)

through ¢ and b and which are between a and b.”

The next example is drawn from arithmetic.

“An integer p is called a prime number if its only positive di- )

visors are 1 and p.”

If we look at definition (6), we see that it contains undefined words
such as “point,” “line,” and ‘“between.” If we are prepared to assume a
knowledge of these words as our undefined concepts which have been intro-
duced in the axioms, then (6) is a satisfactory definition of a segment.

Similarly, (7) is a satisfactory definition of a prime number only if we
understand the meaning of “integer,” ‘“‘positive,” and ‘“divisor.”

A definition may be thought of as a description of how to construct a
certain new object from known objects and relations. A definition may also
be considered to describe a certain object and to assign a name to it. It is
natural to ask whether the construction can be carried out or whether an
object with the specified properties exists.

We have already seen that, in a certain system where the parallel
postulate does not hold, the construction required for definition (5) could
not be carried out, because in this system there are no parallel lines.

We shall not pursue the nature of the definition further but shall
emphasize that it is possible to give a definition of an object that does not
exist. We must be careful to avoid such a mistake. Failure to recognize this
point can lead to the development of a theory that is vacuous, in that there
are no objects to which it applies.

Perhaps the chief characteristic of mathematics is the fact that, after
a list of axioms and definitions have been accepted, there follows a body
of other statements called theorems. In order for a statement to be a theorem,
a proof is required. Our confidence in the statement rests upon the proof,
not upon the fact that the statement has been discovered to be true when-
ever it has been tested. Our confidence in the fact that 22 + y* = 22, where
z, y, z are the lengths of sides of a rigwigg_glg_, rests upon the proof of
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the theorem of Pythagoras, not upon the number of right triangles for which
we have measured the sides. In the absence of a proof we may have strong
evidence for our belief in a certain statement but we cannot state that it is
true. Many theorems have been discovered by observing their truth in
special cases, but until a proof is provided they remain only statements
that may be true or false. It is the proof alone that elevates them to the
rank of theorems.

No one can give an easy means by which to discover or prove theorems.
Euclid said long ago to the King of Egypt that there is no royal road to
geometry. This is still true, not only of geometry but of all branches of
mathematics. Anyone who wants to discover and prove theorems must
have as his tools intuition, imagination, and mathematical skill. He must
also be prepared for hard work. The same could be said for an athlete—there
is no easy way to success. In athletics there are certain rules of good form
that are essential. These do not make a good athlete, but their absence can
be ruinous. Similarly, in mathematics good form and a sound grasp of funda-
mentals do not guarantee success, but their absence may cause failure.

With these things in mind we shall examine some of the essential
principles of logic that a mathematician or a student of mathematics must
have at his command.

1.1 Implication

Many mathematical statements that we shall encounter are of the form
“If . .. ,then ... ,” where each set of dots represents a statement. For
example:

If @ and b are two distinet points, then there is exactly one line passing
through a and b.

If a triangle has two equal angles, then it also has two equal sides.

If a prime number p divides the product of two integers, then p divides
at least one of the integers.

In each case we have started with two statements, say A and B, and
have combined them into a new statement: “If A then B.” This new state-
ment is called an implication. We sometimes say “A implies B” and use the
notation A = B. This same relationship can be expressed as ‘A4 is a sufficient
condition for B” or “B is a necessary condition for A.” For example:

It is sufficient that a triangle have two equal angles in order that the
triangle have two equal sides.

It is necessary that a triangle have two equal sides if the triangle has
two equal angles.

The distinction between necessary and sufficient conditions must be
clearly understood. We give a nonmathematical example to emphasize that
this is a logical, not a mathematical concept.
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Since every horse is a LLP ed but not every quadruped is a horse,
we say that being a quadruped is a necessary condition for being a horse,
but it is not a sufficient condition.

We shall use the words “proposition” or “statement’’ without attempt-
ing to define them. For our purposes these are primitive or undefined terms.
We expect that the reader will have an adequate intuitive grasp of this
concept.

Many statements we shall consider have the form . . . has the prop-
erty . . . ,” where the first blank is to be filled with the name of some
object and the second with a description of some property. We shall also
encounter statements such as “Every . . . has the property . . . ” and
“There exists a . . . which has the property . . . .” We shall not enter
into a discussion of truth and falsehood but merely point out that, as the
student already knows, these propositions may be either true or false
depending on what is written in the blanks.

~ The composition of two propositions, which we call implication 4 = B,
is a new proposition that states that, whenever A is true, then B is also
true. Therefore if we know that the proposition 4 = B is true and the
proposition A is true, then the proposition B is also true. Such reasoning
is perhaps the most important type in mathematical proofs. It is referred
to as the rule of detachment or modus ponendo ponens. This phrase can be
translated approximately as ‘“the rule of establishing by establishing,” an
appropriate name because, by establishing A, we establish B, provided of
course that we have established “If A, then B.”

The implication A = B is true if, whenever A is true, then B is also
true. It does not put any restriction on the truth or falsehood of B in the
case when A is false. We sometimes express this by saying that a false state-
ment implies any statement. Students frequently have difficulty at this
point. We shall give two examples in an attempt to clarify the idea. The
first is nonmathematical, the second mathematical.

Suppose that a person says, “If an event A takes place, then I shall
perform the act B.”” If A does not take place we have no basis for charging
the person with breaking a promise whether or not he performs B.

Consider the implication, “If 5 divides 27 then this polygon n,is regular.”
This is a true statement because in every case for which 5 lelde?é 97 (which
is never) the polygon is regular. There is no case in which A4 is true and there-
fore there is nothing to check about the truth or falsehood of B when A is
true.

1.2 Converse of an implication

Consider an implication A = B. By the converse of this we mean the propo-
sition B = A. For example, we have the implication: “If A DEF is equilat-
eral, then A DEF is equiangular.”



