Methods in Enzymology Volume XLVI Affinity Labeling

EDITED BY
William B. Jakoby
Meir Wilchek

Methods in Enzymology

Volume XLVI

Affinity Labeling

EDITED BY

William B. Jakoby

NATIONAL INSTITUTES OF HEALTH BETHESDA, MARYLAND

Meir Wilchek

THE WEIZMANN INSTITUTE OF SCIENCE REHOVOT, ISRAEL

1977

11511

V.TX menda

COPYRIGHT © 1977, BY ACADEMIC PRESS, INC.
ALL RIGHTS RESERVED.
NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR
TRANSMITTED IN ANY FORMOR BY ANY MEANS, ELECTRONIC
OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY
INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT
PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC.
111 Fifth Avenue, New York, New York 10003

United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NW1

Library of Congress Cataloging in Publication Data

Main entry under title:

Affinity labeling.

(Methods in enzymology; 46) Includes bibliographical references.

1. Proteins—Affinity labeling. I. Jakoby,
William B., Date II. Wilchek, Meir.
III. Series. [DNLM: 1. Chemistry, Physical.

W1 ME9615K v. 46 / QD505.5 A256]

WI ME9615K v. 46 / QD505.5 A256] QP601,M49 vol. 46 [QP551

[QP551] 574.1'925'08s

[574.1'925'028] 77-5422

ISBN 0-12-181946-9

PRINTED IN THE UNITED STATES OF AMERICA

Contributors to Volume XLVI

Article numbers are in parentheses following the names of contributors.

Affiliations listed are current.

- JUDITH M. ANDREWS (9), Center for Blood Research, Boston, Massachusetts
- Ross S. Antonoff (34), Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Vic Armstrong (36), Abteilung Chemie, Max-Planck-Institut für Experimentelle Medizin, Göttingen, West Germany
- Daphne Atlas (66, 69), Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- Andrea Barta (81), Institut für Biochemie, Universität Wien, Vienna, Austria
- F. H. Batzold (51), Department of Pharmacology and Experimental Therapeutics, The Albany Medical College of Union University, Albany, New York
- Edward A. Bayer (72), Department of Biophysics, The Weizmann Institute of Science, Rehovot, Israel
- Hagan Bayley (8), Department of Chemistry, Harvard University, Cambridge, Massachusetts
- WILLIAM F. BENISEK (52), Department of Biological Chemistry, School of Medicine, University of California, Davis, California
- ANN M. BENSON (51), Department of Pharmacology and Experimental Therapeutics, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- David H. Bing (9), Center for Blood Research, Boston, Massachusetts
- Walter Birchmeier (4), Department of Biology, University of California, La Jolla, California
- Ludwig Bispink (74), Abteilung Molekulare Genetik, Max-Planck-Institut für Experimentelle Medizin, Göttingen, West Germany
- ELENA S. BOCHKAREVA (78), Institute of

- Protein Research, Academy of Sciences of the USSR, Poustchino, Moscow Region, USSR
- RONALD T. BORCHARDT (64), Department of Biochemistry, McCollum Laboratories, University of Kansas, Lawrence, Kansas
- Bruce R. Branchini (18, 61), Department of Chemistry, University of Wisconsin, Parkside Kenosha, Wisconsin
- JOHNNY BRANDT (65), Institute of Biochemistry, University of Uppsala, Uppsala, Sweden
- Gerald P. Budzik (14), Department of Biology and Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
- CHARLES R. CANTOR (15), Department of Biological Sciences, Columbia University, New York, New York
- JOHN J. CEBRA (54), Department of Biology, The Johns Hopkins University, Baltimore, Maryland
- Sheue-Yann Cheng (48), Clinical Endocrinology Branch, National Institute of Arthritis, Metabolism, and Digestive Diseases, National Institutes of Health, Bethesda, Maryland
- GIANNI CHINALI (82), Cattedra di Chimica, Universita Degli Studi di Napoli, Naples, Italy
- PHILIPP CHRISTEN (4, 5), Biochemisches Institut der Universität, Zürich, Switzerland
- ROBERTA F. COLMAN (23), Chemistry Department, University of Delaware, Newark, Delaware
- Barry S. Cooperman (85), Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania
- MICHAEL CORY (9), Stanford Research Institute, Menlo Park, California
- Douglas F. Covey (51), Department of Pharmacology and Experimental Therapeutics, The Johns Hopkins University School of Medicine, Baltimore, Maryland

BRIAN M. Cox (70), Addiction Research Foundation, Palo Alto, California

PEDRO CUATRECASAS (38), Burroughs Wellcome Co., Research Triangle Park, North Carolina

ANTOINE DANCHIN (31), Institut Pasteur, Paris, France

FRANK DAVIDOFF (63), University of Connecticut Health Center, Farmington, Connecticut

FRITZ ECKSTEIN (32, 36), Abteilung Chemie, Max-Planck-Institut für Experimentelle Medizin, Göttingen, West Germany

LEWIS L. ENGEL (6). Laboratory of Human Reproduction and Reproductive Biology, and the Department of Biological Chemistry, Harvard Medical School, Boston, Massachusetts

YUVAL ESHDAT (44), Department of Biophysics. The Weizmann Institute of Science, Rehovot, Israel

Hugo Fasold (26), Mehrzweckgebäude Chemie, Institut für Biochemie der Universität' Frankfurt am Main, Frankfurt am Main-Niederrad, West Germany

J. J. FERGUSON, JR. (34), Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania

A. GIARTOSIO (49), Instituto di Chimica Biologica, Facolta di Farmacia, Universita di Roma, Rome, Italy

ALEXANDER S. GIRSHOVICH (77, 78), Institute of Protein Research, Academy of Sciences of the USSR, Poustchino, Moscow Region, USSR

DAVID GIVOL (11, 53, 55), Department of Immunochemistry, The Weizmann Institute of Science, Rehovot, Israel

G. I. GLOVER (71), Department of Chemistry, Texas A & M University, College Station, Texas

P. V. GOPALAKRISHNAN (58), 152 North Mansfield Boulevard, Cherry Hill, New Jersey

ERNEST V. GROMAN (6), Laboratory of Human Reproduction and Reproductive Biology, and the Department of Biological Chemistry, Harvard Medical School, Boston, Massachusetts

RICHARD JOHN GUILLORY (25), Department of Biochemistry and Biophysics, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii

B. Frank Gupton (17), School of Chemistry. Georgia Institute of Technology,

Atlanta, Georgia

BOYD E. HALEY (35), Department of Chemistry and Biochemistry, University of Wyoming, Laramie, Wyoming

ALEXANDER HAMPTON (27, 28, 29), The Institute for Cancer Research, The Fox Chase Cancer Center, Philadelphia, Pennsylvania

ROBERT E. HANDSCHUMACHER (47), Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut

PETER J. HARPER (29), Union Carbide Co., Sydney, Australia

FRED C. HARTMAN (10, 42), Biology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee

GEORGE D. HEGEMAN (62), Department of Microbiology, Indiana University, Bloomington, Indiana

STEPHEN S. HIXSON (82), Department of Chemistry, University of Massachusetts, Amherst, Massachusetts

Susan H. Hixson (82), Department of Chemistry, Mount Holyoke College, South Hadley, Massachusetts

JOHN HOBBS (32), Abteilung Chemie, Max-Planck-Institut für Experimentelle Medizin, Göttingen, West Ger-

PAUL HOWGATE (29). The Institute for Cancer Research, The Fox Chase Cancer Center, Philadelphia, Pennsylvania

FRANZ W. HULLA (26), Mehrzweckgebäude Chemie, Institut für Biochemie der Universität Frankfurt am Main, Frankfurt am Main-Niederrad, West Germany

TADASHI INAGAMI (22), Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee

REINHARD JECK (24), Gustav-Emden Zentrum der Biologischen Chemie, Klinikum der Johann Wolfgang Goethe Universität, Frankfurt am Main, West Germany

STELLA JYHLIH JENG (25), Department of Biochemistry and Biophysics, John A. Burns School of Medicine, University

of Hawaii, Honolulu, Hawaii

ARTHUR E. JOHNSON (15), Department of Chemistry, Columbia University, New York, New York

ARTHUR KARLIN (68), Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York

FRED KARUSH (58), Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania

B. Keil (21), Service de Chimie des Proteines, Institut Pasteur, Paris, France

George L. Kenyon (62), Department of Pharmaceutical Chemistry, University of California, San Francisco, California

A. P. KIMBALL (37), Department of Biophysical Sciences, University of Houston, Houston, Texas

JEREMY R. KNOWLES (8), Department of Chemistry, Harvard University, Cambridge, Massachusetts

WILLIAM H. KONIGSBERG (57), Department of Molecular Biochemistry and Biophysics, Yale University School of Medicine, New Haven. Connecticut

ERNST KUECHLER (81), Institut für Biochemie, Universität Wien, Vienna, Austria

Jack Kyte (59), Department of Chemistry, University of California at San Diego, La Jolla, California

ROBERT G. LANGDON (13), Department of Biochemistry, University of Virginia, Charlottesville, Virginia

ERICH LANKA (80), Max-Planck-Institut für Molekulare Genetik, Berlin-Dahlem, West Germany

G. LEGLER (40), Institute of Biochemistry, University of Cologne, Cologne, West Germany Antonio Lucacchini (33), Instituto di Chimica Biologica, Universita di Pisa, Pisa, Italy

J. A. Maassen (76), Laboratory for Physiological Chemistry, Leiden, The Netherlands

HEINRICH MATTHAEI (74), Abteilung Molekulare Genetik, Max-Planck-Institut für Experimentelle Medizin, Göttingen, West Germany

ALTON MEISTER (46), Department of Biochemistry, Cornell University Medical College, New York, New York

W. Möller (76), Laboratory for Physiological Chemistry, Leiden, The Netherlands

J. ROBERT MUELLER (50), Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri

I. LUCILE NORTON (42), Biology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee

Tom Obrig (34), Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania

EDWARD L. O'CONNELL (41), The Institute for Cancer Research, The Fox Chase Cancer Center, Philadelphia, Pennsylvania

James Ofengand (82), Department of Biochemistry, Roche Institute of Molecular Biology, Nutley, New Jersey

Hiroshi Ogawara (60), Department of Biochemistry, Meiji College of Pharmacy Graduate School, Nozawa, Stagaya-ku, Tokyo, Japan

Franz Ortanderl (26), Mehrzweckgebäude Chemie, Institut für Biochemie der Universität Frankfurt am Main, Frankfurt am Main-Niederrad, West Germany

Yuri A. Ovchinnikov (77, 78), Institute of Protein Research, Academy of Sciences of the USSR, Poustchino, Moscow Region, USSR

PRANAB K. PAL (23), Chemistry Department, University of Delaware, Newark, Delaware

ALLEN T. PHILLIPS (7), Department of

Biochemistry and Biophysics, Pennsylvania State University, University Park, Pennsylvania

LAWRENCE M. PINKUS (45), Laboratory of Metabolism and Endocrinology, National Institute of Arthritis, Metabolism, and Digestive Diseases, National Institutes of Health, Bethesda, Maryland

Paul H. Plotz (56), Arthritis and Rheumatism Branch, National Institute of Arthritis, Metabolism, and Digestive Diseases, National Institutes of Health, Bethesda, Maryland

IEVA R. POLITZER (18), Department of Chemistry, University of New Orleans, New Orleans, Louisiana

OLAF PONGS (79, 80), MRC Laboratory of Molecular Biology, Cambridge, England

James C. Powers (16, 17), School of Chemistry, Georgia Institute of Technology, Atlanta, Georgia

VALERY A. POZDNYAKOV (77), Institute of Protein Research, Academy of Sciences of the USSR, Poustchino, Moscow Region, USSR

MICHAEL RACK (26), Mehrzweckgebäude Chemie, Institut für Biochemie der Universität Frankfurt am Main, Frankfurt am Main-Niederrad, West Germany

ROBERT R. RANDO (3, 12), Department of Pharmacology, Harvard Medical School, Boston, Massachusetts

Parlane Reid (63), University of Connecticut Health Center, Farmington, Connecticut

Erwin Reinwald (79), Max-Planck-Institut für Molekulare Genetik, Berlin-Dahlem, West Germany

NOEL M. RELYEA (46), Memorial Sloan Kettering Cancer Center, New York, New York

Manuel J. Ricardo (54), Department of Microbiology, Center for Health Sciences, University of Tennessee, Memphis, Tennessee

FRANK F. RICHARDS (57), Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut

F. RIVA (49), Instituto di Chimica Biologica, Facolta di Farmacia, Universita di Roma, Rome, Italy

C. H. ROBINSON (51), Department of Pharmacology and Experimental Therapeutics, The Johns Hopkins University School of Medicine, Baltimore, Maryland

GIOVANNI RONCA (33), Instituto di Chimica Biologica, Universita di Pisa, Pisa, Italy

IRWIN A. Rose (41), The Institute for Cancer Research, The Fox Chase Cancer Center, Philadelphia, Pennsylvania

Carlo Alfonso Rossi (33), Instituto di Chimica Biologica, Universita di Bologna, Bologna, Italy

David F. Roswell (18), Department of Chemistry, Loyola College, Baltimore, Maryland

Arnold Ruoho (59), Department of Pharmacology, University of Wisconsin, Madison, Wisconsin

Daniel V. Santi (30), Department of Biochemistry and Biophysics, and Department of Pharmaceutical Chemistry, University of California, San Francisco, California

Takuma Sasaki (29), National Cancer Research Institute, Tokyo, Japan

Paul R. Schimmel (14), Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts

Henri Schmitt (66), Departments of Neurobiology, Membrane Research, and Biophysics, The Weizmann Institute of Science, Rehovot, Israel

RICHARD M. SCHULTZ (6), Laboratory of Human Reproduction and Reproductive Biology, and the Department of Biological Chemistry, Harvard Medical School, Boston, Massachusetts

IRA SCHWARTZ (82), Department of Biochemistry, University of Massachusetts, Amherst, Massachusetts

NATHAN SHARON (44), Department of Biophysics, The Weizmann Institute of Science, Rehovot, Israel

- Lewis A. Slotin (27), Division of Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada
- M. Sokolovsky (20, 67), Department of Biochemistry, The George S. Wise Center of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
- N. Sonenberg (83, 84), Department of Biochemistry, The Weizmann Institute of Science, Rehovot, Israel
- Hans Sternbach (36), Abteilung Chemie, Max-Planck-Institut für Experimentelle Medizin, Göttingen, West Germany
- Yasunobu Suketa (22), Shizuoka College of Pharmacy, Oshi-ka, Shizuoka, Japan
- Paul Talalay (51), Department of Pharmacology and Experimental Therapeutics, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Suresh S. Tate (46), Department of Biochemistry, Cornell University Medical College, New York, New York
- DHIREN R. THAKKER (64), Department of Biochemistry, McCollum Laboratories, University of Kansas, Lawrence, Kansas
- Lars Thelander (32), Department of Biochemistry, Karolinska Institute, Stockholm, Sweden
- E. W. Thomas (39), Department of Chemistry and Applied Chemistry, University Salford, Salford, England
- ROBERT C. THOMPSON (19), Department of Chemistry, Temple University, Philadelphia, Pennsylvania
- C. Turano (49), Instituto di Chimica Biologica, Facolta di Farmacia, Universita di Roma, Rome, Italy
- James C. Warren (50), Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
- Yusuke Wataya (30), Department of Biochemistry and Biophysics, and Department of Pharmaceutical Chemis-

- try, University of California, San Francisco, California
- Moshe M. Werber (31), Polymer Department, The Weizmann Institute of Science, Rehovot, Israel
- EMIL H. WHITE (18, 61), Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland
- WILLIAM E. WHITE, JR. (75), Laboratory of Molecular Biology, University of Alabama Medical Center, Birmingham, Alabama
- MEIR WILCHEK (11, 38, 53, 55, 72, 83, 84), Department of Biophysics, The Weizmann Institute of Science, Rehovot, Israel
- Christoph Woenckhaus (24), Gustav-Embden Zentrum der Biologischen Chemie, Klinikum der Johann Wolfgang Goethe Universität, Frankfurt am Main, West Germany
- FINN WOLD (1), Department of Biochemistry, University of Minnesota, St. Paul, Minnesota
- RICHARD WOLFENDEN (2), Department of Biochemistry, University of North Carolina, Chapel Hill, North Carolina
- James L. Wyatt (23), Cancer Research Institute, University of California School of Medicine, San Francisco, California
- JOSEPH YARIV (43), Department of Biophysics, The Weizmann Institute of Science, Rehovot, Israel
- K. Lemone Yielding (75), Laboratory of Molecular Biology, University of Alabama Medical Center, Birmingham, Alabama
- Ada Zamir (73, 83, 84), Biochemistry Department, The Weizmann Institute of Science, Rehovot, Israel
- U. J. ZIMMERMAN (58), Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Nava Zisapel (67), Department of Biochemistry, The George S. Wise Center for Life Sciences, Tel-Aviv University, Tel Aviv, Israel

Preface

Few investigators entertaining the use of affinity labels will be interested in working with the enzymes, antibodies, receptors, or other macromolecular structures that are reported on here. Indeed, if the work has been done well—and this volume contains a number of elegant examples of affinity labeling—there is little value in repeating identical procedures. What then is the rationale for presenting this material in the context of the Methods in Enzymology series?

The answer requires acknowledgment that the state of the art is such that the detailed instructions for designing effective affinity labels cannot be given with predictive success. Although the first section of this volume, that on general methodology, attempts to present both a critical basis for design as well as a number of synthetic methods of wide applicability, these serve only as guidelines at best. The specific instances that are analyzed in the subsequent articles represent both the triumphs and shortcomings of the technique of affinity labeling in its various guises, including those in which the labeling has little to do with the specific interactions that are basic to the method.

The answer, then, is that our aim in collecting this large number of illustrative methods is to offer to the investigator contemplating the design of a specific affinity label a background to the type of problems and complexities that have been encountered by others. Our expectation is that at least some of the difficulties may be avoided and others may be correctly interpreted. Since some of the affinity reagents are ligands for proteins other than those recorded here, the fortunate investigator may find in this volume the very compound suitable for the purpose. To aid in the search for such compounds lists of ligands and of macromolecules that are discussed in this volume have been compiled.

It would be unfair to blame the contributors to Volume XLVI for failure to include the specifics of the actual labeling experiments. Our instructions to the authors were to stress the design aspects and synthesis of the reagents, including those instances that were not successful, rather than the details of their use; the latter aspect is readily available in the primary journals.

The investigator may also wish to consult Volume XXXIV of this series in which a number of synthetic methods and concepts are discussed from the standpoint of affinity methods applicable to the separation of

proteins.

William B. Jakoby Meir Wilchek

METHODS IN ENZYMOLOGY

GRIGRAL O GRANEDITED BY WOOD A ventil

Sidney P. Colowick and Nathan O. Kaplan

VANDERBILT UNIVERSITY SCHOOL OF MEDICINE NASHVILLE, TENNESSEE DEPARTMENT OF CHEMISTRY
UNIVERSITY OF CALIFORNIA
AT SAN DIEGO
LA JOLLA, CALIFORNIA

*VOLUME ACT THE TAKE THE SELECTIONS

- I. Preparation and Assay of Enzymes
- II. Preparation and Assay of Enzymes
- III. Preparation and Assay of Substrates
- IV. Special Techniques for the Enzymologist
- V. Preparation and Assay of Enzymes
- VI. Preparation and Assay of Enzymes (Continued)
 Preparation and Assay of Substrates
 Special Techniques
- VII. Cumulative Subject Index

METHODS IN ENZYMOLOGY

EDITORS-IN-CHIEF

Sidney P. Colowick Nathan O. Kaplan

Volume VIII. Complex Carbohydrates

Edited by Elizabeth F. Neufeld and Victor Ginsburg

Volume IX. Carbohydrate Metabolism Edited by Willis A. Wood

Volume X. Oxidation and Phosphorylation Edited by Ronald W. Estabrook and Maynard E. Pullman

VOLUME XI. Enzyme Structure Edited by C. H. W. Hirs

Volume XII. Nucleic Acids (Parts A and B)

Edited by Lawrence Grossman and Kivie Moldave

VOLUME XIII. Citric Acid Cycle Edited by John M. Lowenstein

VOLUME XIV. Lipids
Edited by John M. Lowenstein

VOLUME XV. Steroids and Terpenoids Edited by RAYMOND B. CLAYTON

Volume XVI. Fast Reactions Edited by Kenneth Kustin

VOLUME XVII. Metabolism of Amino Acids and Amines (Parts A and B) Edited by Herbert Tabor and Celia White Tabor

VOLUME XVIII. Vitamins and Coenzymes (Parts A, B, and C) Edited by Donald B. McCormick and Lemuel D. Wright

VOLUME XIX. Proteolytic Enzymes

Edited by Gertrude E. Perlmann and Laszlo Lorand

VOLUME XX. Nucleic Acids and Protein Synthesis (Part C) Edited by Kivie Moldave and Lawrence Grossman VOLUME XXI. Nucleic Acids (Part D)

Edited by LAWRENCE GROSSMAN AND KIVIE MOLDAVE

VOLUME XXII. Enzyme Purification and Related Techniques Edited by WILLIAM B. JAKOBY

Volume XXIII. Photosynthesis (Part A)

Edited by Anthony San Pietro

Volume XXIV. Photosynthesis and Nitrogen Fixation (Part B)

Edited by Anthony San Pietro

Volume XXV. Enzyme Structure (Part B)

Edited by C. H. W. Hirs and Serge N. Timasheff

VOLUME XXVI. Enzyme Structure (Part C) Edited by C. H. W. Hirs and Serge N. Timasheff

Volume XXVII. Enzyme Structure (Part D)

Edited by C. H. W. Hirs and Serge N. Timasheff

VOLUME XXVIII. Complex Carbohydrates (Part B)

Edited by Victor Ginsburg

Volume XXIX. Nucleic Acids and Protein Synthesis (Part E)

Edited by Lawrence Grossman and Kivie Moldave

Volume XXX. Nucleic Acids and Protein Synthesis (Part F)

Edited by Kivie Moldave and Lawrence Grossman

Volume XXXI. Biomembranes (Part A)

Edited by Sidney Fleischer and Lester Packer

Volume XXXII. Biomembranes (Part B)

Edited by Sidney Fleischer and Lester Packer

Volume XXXIII. Cumulative Subject Index Volumes I-XXX

Edited by Martha G. Dennis and Edward A. Dennis

VOLUME XXXIV. Affinity Techniques (Enzyme Purification: Part B)

Edited by WILLIAM B. JAKOBY AND MEIR WILCHEK

VOLUME XXXV. Lipids (Part B) Edited by John M. Lowenstein

VOLUME XXXVI. Hormone Action (Part A: Steroid Hormones)

Edited by Bert W. O'Malley and Joel G. Hardman

VOLUME XXXVII. Hormone Action (Part B: Peptide Hormones) Edited by BERT W. O'MALLEY AND JOEL G. HARDMAN

VOLUME XXXVIII. Hormone Action (Part C: Cyclic Nucleotides) Edited by Joel G. Hardman and Bert W. O'Malley

Volume XXXIX. Hormone Action (Part D: Isolated Cells, Tissues, and Organ Systems)

Edited by Joel G. Hardman and Bert W. O'Malley

Volume XL. Hormone Action (Part E: Nuclear Structure and Function) Edited by Bert W. O'Malley and Joel G. Hardman

VOLUME XLI. Carbohydrate Metabolism (Part B)

Edited by W. A. Wood

VOLUME XLII. Carbohydrate Metabolism (Part C)

Edited by W. A. Wood

VOLUME XLIII. Antibiotics Edited by John H. Hash

VOLUME XLIV. Immobilized Enzymes Edited by Klaus Mosbach

Volume XLV. Proteolytic Enzymes (Part B)

Edited by Laszlo Lorand

VOLUME XLVI. Affinity Labeling
Edited by WILLIAM B. JAKOBY AND MEIR WILCHEK

VOLUME XLVII. Enzyme Structure (Part E) (in preparation) Edited by C. H. W. Hirs and Serge N. Timasheff

VOLUME XLVIII. Enzyme Structure (Part F) (in preparation) Edited by C. H. W. Hirs and Serge N. Timasheff

List of Substances for Which Affinity Analogs Are Presented

Article numbers follow each entry

A

Acetylcholine, 68

N-Acetylglucosamine, 39, 44

ADP, 23

Amines, 12

γ-Aminobutyrate, 3, 12

Amino sugars, 39

AMP, 26, 29, 33

19-nor-4-Androsterone-3,17-dione, 50

Asparagine, 47

Aspartate, 4

ATP, 23, 25-27, 29

B

Benzene arsonate, 54 Biotin, 72

C

cAMP, 26, 34, 35
Catacholamines, 64
cGMP, 34
Chitobiose, 39, 44
Chloramphenicol, 73, 83
Chloroquinoline, 75
Chymotrypsin substrates, 16
CoA, 25
Colchicine, 66
Conduritol, 40
Cyclic nucleotides, 26, 34, 35

D

dCDP, 32 Dihydroxyacetone phosphate, 5 Dinitrophenol, 53, 55, 57 Divalent ions, 63 DPN, 23-25 DPNH, 23, 24 dUMP, 30 dUTP, 32

E

Estradiol, 6, 50 Ethidium, 75 F

Fluorene, 75 Fluorescein, 65

Peptidyl-tRNA 73 D

Galactosylamine, 39, 43
GDP, 76
Glucitol 6-phosphate, 41
Glucose, 13
Glucose 6-phosphate, 41
Glutamine, 45
Glyceraldehyde 3-phosphate, 10, 43
Glycosylamines, 39
GMP, 26
GTP, 26, 73
Gulitol 6-phosphate, 41

T

Iditol 6-phosphate, 41 IMP, 28, 37 Initiation factor 3, 85

K

3-Ketosteroids, 51, 52

L

Lactose, 58 Leucine, 71 Luciferin, 61 Lysine, 71

M

Magnesium, 63
Mandelate, 62
Mannitol 6-phosphate, 41
α-p-Mannosides, 39
Metal complexes, 31
Morphine, 70
mRNA, 73

N

NAD, 23-25 NADH, 23, 24 p-Nitrophenol, 55 Norepinephrine, 69 Nucleotides, 80

for Which Amnity Analogs Are Presented Oligonucleotides, 80 Ouabain, 59

P

Penicillin, 60 Pepsin substrates, 9 Peptides, 16-20 Peptidyl-tRNA, 73, 85 Phenylalanine, 71 .00 samual recorded Phenylalanine-tRNA, 74 Practolol, 69 Propranol, 69 Puromycin, 73, 79, 85 and good good good of Pyridoxamine phosphate, 49 Pyruvate, 10 stadgeodg-8 shydoblarasylD

R

List of Substa Renin substrate, 22 Ribulose 1,5-bisphosphate, 42

S

Streptomycin, 78, 79 Sulfonamides, 11 . serimes contributed A.M.

T

Thyroxine, 48 tRNA, 14, 81, 82 Tyrosine, 71

U

UTP, 36

Dilly droxyacetone phosphate, 5

List of Macromolecules Subjected to Affinity Labeling

Article numbers follow each entry

Fyruvate kinase, 23, A. 63

Acetylcholine receptor, 68 Acrosin, 16 Actin, 26 Adenosine deaminase, 33 Adenylate kinase, 27 Adenylosuccinate AMP lyase, 29 ADP-binding protein, 23 β-Adrenergic receptor, 69 (A SI) AVA Albumin, 65 Alcohol dehydrogenase, 24, 25 Aldolase, 5, 10 Amidotransferases, 45 Amino acid-tRNA synthetase, 82 γ-Aminobutyrate-ketoglutanate aminotransferase, 3, 12 Aminotransferases, 3, 49 (see also individual enzymes) AMP aminohydrolase, 29 assessor foid I Anthranilate synthetase, 45 al midmond? Antibodies to benzenearsonate, 54 Antibodies to dinitrophenol, 53, 55, 57 Antibodies to lactase, 58 Antibodies to p-nitrophenol, 56 L-Asparaginase, 47 Aspartate aminotransferase, 4 ATPase, 26, 31, 59

If you By troughest enisory T

Biotin transport system, 72

C

C-1 esterase, 9
Cacoonase, 16
Carbamylphosphate synthetase, 45
Carbonic anhydrase, 11
Carboxypeptidase, 16, 20
Catachol-O-methyltransferase, 64
Cathepsin, 16
Chymotrypsin, 11, 16–18
Clostripain, 16, 21
Coenzyme Q reductase, 25
Complement (component C-1), 9
Cyclic nucleotide receptors, 34, 35
Cystathionase, 3, 49

Lencine transport system, 71

Decarboxylases, 3, 49
Dehydrogenases, 23
(see also individual enzymes)
DNA, 75
DNA-dependent RNA polymerase, 36, 37

Monomine bxidase, E 12

Elastase, 23
Elongation factors, 77, 83
Enolase, 41
Estradiol dehydrogenase, 6, 50

F

Flavine-linked enzymes, 49 Formylglycinamide ribonucleotide amidotransferase, 45

Peptidyltransferase, 73, 78, 79, 81-85 Phonylalanine transfer evstem, 71

β-Galactosidase, 39, 43
p-Glucose transport, 13
Glucosidases, 40
Glutamate decarboxylase, 49
Glutamate dehydrogenase, 23
Glutamate synthase, 45
Glyceraldehyde-3-phosphate dehydrogenase, 41
GMP kinase, 28
GTPase, 77

I

IMP kinase, 28 Initiation factor 3, 85

K

Kallikrein, 16
2-Keto-3-deoxy-6-phosphogluconate aldolase, 10
3-Ketosteroid isomerase, 51, 52
Kinases, 23
(see also individual enzymes)

ected to Affinit Labeling

α-Lactalbumin, 39 β-Lactamase, 60 Leucine transport system, 71 Luciferinase, 61 Lysozyme, 39, 44

Dehydrogennees, 23 M

Maltase, 40
Mandelate racemase, 62
Micrococcal nuclease, 38
Monoamine oxidase, 3, 12
Myosin, 31

Elongation factors 7/Kg

Nucleases, 38

0

Opiate receptors, 70

Formyletycinamide of Paned

Papain, 11, 16
Peptidyltransferase, 73, 78, 79, 81–85
Phenylalanine transport system, 71
Phosphoglucomutase, 41
Phosphoribosylpyrophosphate amidotransferase, 45
Phosphoribosylpyrophosphate ATP ligase, 20
Phosphorylase, 26, 31
Prealbumin, 48
Progesterone receptor, 50

Proteolytic enzymes, 16-19
(see also individual enzymes)
Pyridoxal phosphate enzymes, 12
(see also individual enzymes)
Pyruvate kinase, 23, 29, 63

A Reguer amindaly tea A

Renin, 22
Ribonuclease, 38
Ribonucleoside diphosphate reductase, 32
Ribosomal proteins, 73, 76–81, 83–85
Ribosomes, 15
Ribulose bisphosphate carboxylase, 42
RNA (16 S), 85
RNA (23 S), 74

5

Serine esterases, 9, 16–19 Serine proteases, 9, 16–19 Staphylococcal nuclease, 38

> norransierasas, 3**T**H (acc also individual essymes)

Thiol proteases, 16, 19
Thrombin, 16
Thymidylate synthetase, 30
Transaminases, 3, 49
(see also individual enzymes)
Triosephosphate isomerase, 10
tRNA synthase, 14
Trypsin, 11, 16, 17, 21
Tryptophanase, 3, 49
Tubulin, 66

Tyrosine transport system, 71

此为试读,需要完整PDF请访问: www.ertongbook.com