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USE OF THE SIMPLEX DESIGN IN THE STUDY
OF JOINT ACTION OF RELATED HORMONES

P. J. CLARINGBOLD

Department of Veterinary Physioloyy.
University of Sydney, N.S.W., Australia

INTRODUCTION

In certain toxicological studies the term joint action has come to take
a special meaning. If members of a group of related compounds all
cause death of an organism' when administered separately the simul-
taneous action of these substances is called their joint action. Bliss
(1939) first discussed the analysis of data obtained in this manner.
From this time the problem has been examined in terms of tolerance
distribution theory and developed in relation to probit analysis (Finney,
1952). Plackett and Hewlett (1951) have extended the tolerance dis-
tribution theory to different theoretical forms of joint action and
developed a set of mathematical models, each of which is based on
many assumptions and is very difficult to fit to experimental data.

Fisher (1954) has shown that parameters of the binomial distribution
may be estimated without tolerance distribution assumptions. The
aim of the present paper is to show that the study of joint action by
means of an appropriate experimental design—the simplex design—
allows ready interpretution of experimental data with no reference to
a joint tolerance distribution, and no further assumptions than normally .
required in quantal analysis. The method is also appropriate without
modification to the study of joint action of substances eliciting a graded
response simply by applying the standard estimation procedures.

Examples will be drawn from the study of the action of oestrogens
on the vagina of the ovariectomized mouse. The quantal response
in this case is cornification of the vaginal epithelium.

MATHEMATICAL METHODS
The simplex design.

Suppose 4, , (j = 1,2, ---, k) are the doses of k¥ hormones which,
when administered separately, elicit approximately the same percentage
response. A .int dose, D, may be defined in terms of k coordinates,
X, , which take positive vaiues, thus,

D = E A X;, )]
1



SIMPLEX DESIGN 175

where the coordinate values are restricted by,
Z X,' = . (2)

The experimental region is therefore restricted by the above to a
(k — 1) dimensional simplex with vertices at the points on the co-
ordinates X; = 1. This method of approach allows all different types
of joint doses to be uniquely specified. Thus if X; = 1, the 7th hormone
is administered separately. If X; + X, = 1, then some mixture of
the 7th and jth hormones are administered together. In both the
study of experimental designs in this region and the analysis of ex-
perimental data it is essential that a (k¢ — 1) dimensional coordinate
system be introduced to the simplex. This may be done in two stages,
(1) shift the origin of the X system to the centroid of the simplex, i.e.
the point where every coordinate has the value 1/k, (2) rotate the axes
so that (say) the kth is orthogonal to the simplex.

The first is accomplished by the simple transformation (3) which
at the same time changes the scale of measurement so that the vertices
have non-fractional coordinates in the new system, X.

X, = k(X; — 1/k) = kX, — 1, ®3)

where 1 is a vector of length k all elements of which are unity.

The second stage is carried out by an orthogonal transformation
(4) of rank k with matrix, ®. The scale is also modified so the vertex-
centroid distance becomes (k — 1) units.

X; = kl‘fi'e) (4)
where k' = k(k — 1)-/k is a scale factor.

! 0 0 0 s

-1 (k- 2) 0 0 s

-1 -1 (k — 3)m 0 s

o=1/kk—1-| + T —™ 0 s
-1 —1 —m 0 s

-1 -1 -m . n s

L —1 —1 —m - —n s/

The additional letters in this matrix are determined from the fact that
the sum of the squares of the elements of each column is k(k — 1).

2



176 BIOMETRICS, JUNE 1955

After this transformation all points of the simplex take the value
0 for the coordinate X, which may therefore be ignored or used to
describe another experimental variable, say different equivalent levels
of dose. An experimental design consists of N points of the experimental
region and may be summarized in a matrix called the design matriz,
Box & Wilson (1951). The N rows of this matrix give the values of
the coordinates at each of the N experimental points. In the present
case the design matrix is of order N by (k — 1).

An example when k = 2.

In this case equations 1 and 2 become
D=X1A)+X2A2, X|_+X2=1, OSX,, X2_<_l (5)

The experimental region is a line. For illustrative purposes a design
matrix consisting of 5 experimental points, including the vertices, the
centroid and two intermediate points will be transformed using the
appropriate forms of equations 3 and 4.

XX X, Xz X X
1 o[ 1 —1]' 1 0]
$ |l ¥ 3] 20
3 3|l o of oo
P || 3||-% o0
o iJL—1 1Jl-1 o]

where X, = 2X, — 1, X, = 2X, — 1.

X, , %] = 3%, ,55,1-[ L ‘}
-1,1

Transformation to a log dose scale.

Often in biological work respopse is linearly related to log dose.
In studies on joint action it is of interest to test if this relationship
still holds with respect to log joint dose. Since equation 1 is not linear
in log joint dose a series of transformations are made so that this equa-
tion holds for the logarithms of the equivalent doses and the log joint
dose in terms of different coordinates. These transformations are all
based on the simple case k = 2.

Suppose equation 5 be written,

d=pa,+(1—-pa, 0<p<I1. (6)

3



SIMPLEX DESIGN 177
This equation may be written,

i logd = qloga, + (1 — g) log a, , ™
p=0""=-n/1-1), where r = ay/a, . (8)

Some values of this transformation are given in Table 1. Equation
7 may be put in the form of equation 5 by simple definition of terms,
i.e. D = logd, A, = log a, and so on.

TABLE 1
Table of the transformation,
p=(—r/r—-1),
for equidistant sets of values of g. Geometric intervals of r are tabulated since the
changes in p are more linear with this scale. (Figures in table are all X 10,000).
r

q V2| 2 (242 4 |44/2| 8 |8+4/2| 16 32 |64 (128

1/2 | 5432 | 5858 | 6271 | 6667 | 7040 | 7388 | 7708 | 8000 | 8498 (8889|9188
1/3 | 3725 | 4126 | 4531 | 4934 | 5330 | 5714 | 6083 | 6434 | 7071 (7619(8079
2/3 | 7044 | 7401 | 7735 | 8042 | 8321 | 8571 | 8793 | 8987 | 9298 |9524(9682
1/4 | 2834 | 3182 | 3541 | 3905 | 4271 | 4633 | 4988 | 5333 | 5983 |6567|7082
3/4 . | 7815 | 8108 | 8377 | 8619 | 8836 | 9026 | 9191 | 9333 | 9555 |9710|9865
1/5 | 2286 4 2589 | 2904 | 3229 | 3558 | 3889 | 4217 | 4540 | 5161 |5737|6260
2/5 | 4420 | 4843 | 5263 | 5675 | 6074 | 6454 | 6813 | 7148 | 7742 82348632
3/5 | 6410 | 6805 | 7180 | 7530 | 7853 | 8147 | 8411 | 8646 | 9032 [9321(9530
4/5 | 8267 | 8513 | 8736 | 8935 | 9111 | 9263 | 9395 | 9506 | 9677 9794|9871
1/6 1916 | 2182 | 2461 | 2751 | 3047 | 3347 | 3648 | 3947 | 4529 |5079(5589
5/6 | 8564 | 8775 | 8965 | 9134 | 9281 | 9408 | 9517 | 9608 | 9748 (9841|9902
1/10 | 1163 | 1339 | 1528 | 1726 | 1933 | 2146 | 2363 | 2583 | 3023 |3457|3875
3/10 | 3372 | 3755 | 4145 | 4537 | 4925 | 5304 | 5672 | 6024 | 6673 7241|7728
7/10 | 7354 | 7689 | 7998 | 8281 | 8536 | 8763 | 8962 | 9135 | 9410 [9606(9741
9/10 | 9149 | 9282 | 9401 | 9514 | 9594 | 9670 | 9734 | 9787 | 9866 |9918|9951

In more general cases the joint dose may be looked on as a series
of equations 6. For example if k¥ = 3 equation 1 may be written,

d = p{p'a, + (1 — pa.} + (1 — pla,

wherec 0 £ p, p” < 1. The quantity in braces may be regarded as a

quantity, say b, and two transformations of the form of 8 made.
Thus

a(l=e’)  _ (1-q)
2

d=al"a as 9

4



178 BIOMETRICS, JUNE 1955

where
p = (T:l—") - )/ =), T = a,/a,

P = (rél_” - r?)/(l - T?)y r, = aa/b.

Equation 9, on taking logarithms and using obvious definitions may be
written, )

D=XA 4+ XA, + X4, X+ X +X,=1. (10

In this form response may be related to log joint dose and its com-
ponents in a simple manner. When equivalent doses ‘are equal, log-
arithmic transformations need not be made, since in this case log joint
dose is unaffected by variations in the coordinates subject to the re-
striction 2.

Ezxtension of the expervmental region.

Different equivalent levels of dose may be chosen for study. The
method Ly which this is carried out depends on the form of the re-
lationship of response to dose. In the case where this relationship is
loglinear it is convenient to define each equivalent dose (4;) as a
function of an exponent (n) in terms of constants.

A,' = a,-T? (ll)

The values of the constants chosen depend on the Median effective
dose (M.E.D.) and slope of the jth dose response line. Substituting
the logarithm of these equations in equation 10 yields a function
‘linear in n if the X’s are held constant and linear in the X’s if n is held
constant. It is also useful to choose the levels of the constants so that
the values of A; chosen for study correspond to a set of equally spaced
symmetric values of n centered at zero.
Other experimental variables may be introduced into the design in
a factorial or other manner. In practice, however, if many points in
the simplex are chosen for study this will lead to very large numbers of
" treatment combinations.

Analysis of variance.

Suppose a mixed level factorial experiment consists of the combina-
tions of three factors denoted S, L and A at s, and a levels respectively.
The factor S is somewhat unusual and consists of 8 points of the simplex
design, the factor L of ! different levels-of equivalent dose and 4 an
additional factor at a levels. The complete design matrix therefore
has N = s-l-a rows and (k — 1) + 2 columns where k is the number
of substances entering the simplex design. 'For each factor an orthogonal

5



SIMPLEX DESIGN 179

set of comparisons incluc’ ing the identity may be drawn up and tabulated
as an orthogonal matrix, or as the product of an orthogonal matrix and
a diagonal matrix to preserve round numbers. Suppose these matrices
be arranged so the columns present comparisons, the first column
consisting only of unity i.e. the identity. Successive columns or com-
parisons may be numbered S°, S', S? --. , where the superscript 0
denotes the identity and the other superscript has a currency of at
most the number of degrees of freedom of the factor levels under con-.
sideration. The full set of orthogonal comparisons appropriate to the
N treatment combinations ma.g' be obtained by the direct product (see
Tocher, 1952 for a definition) of these matrices followed by an appropri-
ate permutation of the columns. Since in general only main effects
and first order interactions are required, other degrees of freedom
going into an estimate or error or being isolated (see Fisher, 1951)
only part of this product need be carried out. Main effect degree of
freedom comparisons are obtained by the direct product of the column
under consideration with all other identity columns. First order
interaction comparisons are obtained by the direct product of the two
individual main effect comparisons under consideration with the re-
maining identities. The matrix resulting from these direct products
will consist of the first columns of an orthogonal matrix or the product
of an orthogonal matrix with a diagonal matrix since the direct product
of orthogonal matrices is orthogonal. The sum of squares attributable
to the individual comparisons may be determined in the standard
manner. For a binomial variable the appropriate procedures have been
described by Claringbold, Biggers and Emmens (1953).

When k = 2, several sets of orthogonal comparisons have been
determined for the purpose of detecting departures from linearity of
response on dose. These are given for three cases, namely where one,

two and three points are equally spaced on the line joining the two
vertices.

Name

S” 1 1 1 1 1 1 1 1 1 1 1 1
SY -1 0 1 -1 0 0 1 -1 0 0 0 1
N 1 -2 1 -1 1 1-1 1 0-2 0 1
S 0-1 1 0 2 -3 2-3 2
S 0-1 0 1 0

The first row (since the matrices have been transposed for con-
venience) is the identity. The second tests whether equivalent doses

6



180 BIOMETRICS, JUNE 1955

were given. The third tests whether the mid-point response(s) falls
on the line joining the control responses. The last comparison in each
case is determined by those already made. An example of the use of
these coefficients is given by Claringbold and Biggers (1955).

Sets of comparisons may be determined for other cases where k is
greater than two and when symmetric arrays of points in the simplex
have been chosen.

Regression analysis.

A response transformate may be directly related to functions of
the coordinates of the design matrix by a weighted regression analysis.
The information matrix in this case is not diagonal since the sums of
squares and cross-products of the coordinates of the design matrix are
not in general independent.

EXAMPLE

The data are summarised in Table 2 together with the coordinates
of the experimental design. The plan of the simplex design used in
this experiment is shown in Fig. 1. The complete design is in the form

?n

e

mo
-3

L
FIG. 1.

Plan of the two-dimensional simplex design used in the example. Points A, D and G correspond to the
administration of oestrone, vestradiol-3:178 and oestriol alone, respectively. Points on the lines joining
these vertices correspond to the administration of two oestrogen mixtures, while points within the tri-
angle correapond to mixtures of three vestrogens.
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of two equilateral triangular prisms, one for each replicate. Each
prism has experimental points on three equidistant triangular planes.
Since equal doses of oestrone, oestradiol-3:178 .and oestriol are ap-
proximately equivalent in their effect on response when administered
intravaginally no logarithmic transformations are used. The empirical
angular response (Y) is related to ten functions of the coordinates of

TABLE 2

Percentage response of groups of 12 ova.rieé/{omized mice to joint intravaginal admin-
istration of oestrone, oestradiol and oestriol, The equivalent doses of these oestrogens
denoted A4, , A, , and A were chosen so that
A=Ay = Ay, =0.75 X 10-4g.  when Xz = —1 /
= 1.50 X 10~%ug. when X;, = 0
= 3.00 X 10~%ug. when X, = 1.

Coordinates

Original coordinates Point in simplex Response

X] X: Xa X| Xg X‘,=—'l XL-O XL-].
First replicate—Xp = —1

1 0 0 A 2 0 17 -42 83
2/3 1/3 0 B 1 t/3 0 33 75
1/3 2/3 0 C 0 2t/3 33 33 75
0 1 0 D -1 t 58 58 100
0 2/3 1/3 E -1 t/3 17 33 67

0 1/3 2/3 F -1 —t/3 33 33 58

0 0 1 G -1 -t 25 50 42
1/3 0 2/3 H 0 —2t/3 25 42 42
2/3 0 1/3 I 1 —t/3 0 25 75
1/3 1/3 1/3 J 0 0 17 25 58

Second replicate—Xp = 1

1 0 0 A 2 0 42 50 75
1/2 1/2 0 K 1/2 t/2 17 33 83

0 1 0 D -1 t 75 67 83

0 1/2 1/2 L -1 0 33 42 67
0 0 1 G -1 -t 50 42 100
1/2 0 1/2 M 1/2 —-t/2 17 42 58
2/3 1/6 1/6 N 1 0 33 33 . 58
1/6 2/3 1/6 (0] -1/2 t/2 50 50 58
1/6 1/6 2/3 P -1/2 —t/2 33 33 50
1/3 1/3 1/3 ¥ 0 0 17 42 42

where t = /3




182 BIOMETRICS, JUNE 1956

the design, by the following regression equation,
Y = B + BeXe + B X + BXs + BuXs + BuX.X,
+ B XXy + B2 XaXs + BuX: + BuXs .

The information matrix was determined for these ten parameters and
was inverted to give the variance-covariance matrix (Table 3), The

TABLE 3

Variance-covariance matrix for the experimental data and design given in Table 2. The theoretical
variance used in its formation is that tabulated by Claringbold, Biggers and Emmens (1853) for the
empirical angular transformation.

3.281 -0.106 . s . . . - -1.066 -—1.068
—0.106 1.261 . P . = s P 0.056 0.058
» 3.182 W . ¥ . ¥ —1.473 1.473

s 2.860 8 2.436 A 4 i

1.883 E o 3

2.436 . 3.857 3 .

. 1.981 N .

. . . . . 1.981 .
—1.066 0.056 —1.473 . - . 5 a 1.727 -0.605
L -1.066 0.05 1.473 . ; : . . —0.605  1.727
X Xa X X1 X X1Xs XiX, XX, X1 Xt

matrix inversion was carried out using the method of Fox (1950) and
Fox and Hayes (1952). In Table 4 the estimates of regression co-

TABLE 4
Regression analysis of the data of Table 2 following the
empirical angular transformation.

Regression Least square

coefficient - estimate t() P
Bo 35.39 )
Br 2.61 =1.12 2.3 0.02>P >0.01
B 1.93 £1.78 1.1 0.3 >P>0.2
Bs 2.84 +1.69 1.7 0.1 >P>0.05
BL 12.30 = 1.37 9.0 P <0.001
B —0.90 = 1.96 0.5 0.7 >P>0.6
BiL 3.12 +£1.41 2.2 0.05>P >0.02
BsL . 0.54 3 1.41 0.4 0.7 >P>0.6
Bu 3.20 = 1.32 2.4 0.02>P >0.01
B’ 4.21 +=1.32 3.2 0.01 > P > 0.001

Deviations from regression: x5, = 49.7,0.7 > P > 0.5.
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efficients are tabulated together with their standard errors and test of
simnificance. Both estimates of regression on the quadratic functions
of the simplex coordinates are significantly positive. This indicates
that the response to mixtures becomes smaller as the centroid of the
simplex, which corresponds to a 1/3: 1/3: 1/3 mixture of the three
oestrogens, is approached, and shows that the oestrogens have a mutually
antagonistic action. The physiological significance of these findings
is discussed by Claringbold (1955).

DASCUSSION

The simplex design in itself is a non-factorial désign and may be
criticised on these grounds. Factorial experiments in joint action
studies lead to complex response surfaces even if one drug behaves
simply as a dilution of the other (i.e. similar action, see Finney, 1952).
Suppose a factorial experiment is designed for two factors (4, A’) each
at three levels. Suppose as a theoretical example both factors are
simply doses of the one hormone, i.e., similar action must hold, and
also suppose that response is linearly related to log dose. A possible
design could be : —

Dose of A
(units)
,—-L—
1 2 4 Log, total dose
Dose of A’ 1 2 3 5 1.00 1.59 2.32
(units) 2 3 4 6 1.59 2.00 2.58
4 5 6 8 2.32 2.58 3.00

'

The total dose administered to each animal in the nine groups of animals
is shown in the body of the table, while the log total dose is shown as a
subsidiary block of mixtures in one-one correspondence to the first
block. If response is linear to log dose it must be proportionai to these
elements apart from some constant. Thus in the simplest case a curved
response surface must be evaluated. Also if treatments consisting of
one substance or control treatments are included they create difficulties
since the log of zero is — . The data must be analysed, therefore,
in a number of disconnected steps. Plackett and Hewlett (1951) use
this method and their analysis takes the following form:

1. Fit one substance dose response lines.

2. Predict on basis of alternative models the response to joint doses.
3. Choose the hypothesis which describes the observed data best.
Using the method described in this paper in the theoretical example,
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