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1
Introduction

K" channels are required both, for absorption and secretion of fluids and
electrolytes in epithelia. Recent findings in molecular biology and electro-
physiology have given new insight into the nature of colonic K* channels.
Their properties and their putative molecular identity will be described in
detail. The crucial role of their regulation for the net transport of Na*, K*,
H,0 and CI" will be reviewed in this chapter. In addition the role of K*
channels in the cytosolic homeostasis of the single enterocyte i.e. regulation
of cell volume, control of transport, and differentiation will be discussed.

Although there are distinct differences between species in colonic func-
tion and anatomy the underlying mechanisms for absorption or secretion
are similar. The activity of transport proteins, however, depends on the
needs for salt and water balance of the respective species and results in
different functional phenotypes. In this review we therefore do not diverge
to species differences but emphasise the integration of experimental find-
ings to arrive at the basic mechanisms.

K" channels are a prerequisite for epithelial transport in the large intes-
tine. Their function determines weight and electrolyte composition of the
stool. A volume of about 1500 ml/day enters the colon, less than 200 g are
excreted per day. In addition the colon is the site of action for laxatives as
well as for bacterial toxins. The composition of stool is given in Table 1
[30,99,244,285].

Nutrients like glucose and amino acids are absorbed already in the small
intestine and there is no evidence for glucose or amino acid absorption in
the colon of adults. Short chain fatty acids (SCFA) and gasses like H,, CO,,
CH,, and H,S are produced in the large intestine by bacterial fermentation
of undigested carbohydrates and proteins. SCFA form the major part of
anions in the colon lumen. K*, Na* and NH," are the respective cations.

The major task of the colon under physiological conditions is the ab-
sorption of Na*, SCFA, HCOj, CI, and H,0 as well as the secretion of K*
and mucus. Besides secretion of K* and mucus the secretory function of the
colon becomes only evident when physiological or pathophysiological
stimuli act on enterocytes. Under these conditions the vectorial transport of
Na®, H,0 and CI is reversed and stool volume can increase up to 6-fold and
more.

Some congenital diseases linked to defects of distinct membrane trans-
port proteins elucidate the understanding of transport mechanisms and
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Table 1. Composition of stool

R. Warth, and M. Bleich

Concentration Excretion/day

Solids 21g
pH 5.9-8.5
Bilirubin 5-20 mg
Urobilinogen 57-200 mg
Bile acids 9 mmol/l 200-800 mg
Lipids 0.1-11g
Glucose, Amino acids <1 mmol/l
Cations
Na* 5-125 mmol/l 0.5-12.5 mmol

* 30-200 mmol/l 3-20 mmol
Ca?* 8-33 mmol
mg* 5-15 mmol
NH," 14-20 mmol/l
Anions
Cl 5-30 mmol/I 0.5-3 mmol
HCOy < 30 mmol/l <3 mmol
Phosphate 10-25 mmol
Organic anions (SCFA) 100-400 mmol/l 10-40 mmol

facilitate the ranking of functional relevance of the respective pathways.
Examples of disorders which cause a colonic phenotype are cystic fibrosis
with a defective luminal ClI" conductance [151], congenital chloride diar-
rhoea with a functional defect of the luminal CI/HCO3" exchanger [119,137]
and congenital sodium secretory diarrhoea with a functional defect of the
luminal Na*/H" exchanger [82].

Electrolyte transport in the mammalian colon has been reviewed in detail
[12,120,223]. A short summary and update of the basic mechanisms will be
given in the following section.

2
Anatomy and Function of the Colon

Cecum, proximal and distal colon differ in their functional properties and
embryological origin. Cecum and proximal colon develop from the midgut.
The distal colon develops from the hindgut. Cecum and proximal colon are
intermediate conductance epithelia with a transepithelial resistance of about
100 Qcm’. The distal colon is moderately tight with a fourfold higher resis-
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tance [35]. Except for the distal colon the information about carrier proteins
and ion channels which are involved in electrolyte transport in these seg-
ments is limited, and no information is available on the single channel level
from the intact tissue. SCFA are absorbed in the undissociated form by non-
ionic diffusion [31] and to a larger portion as organic anions. They enter the
epithelium probably coupled to HCO, secretion [270] and with Na*/H"
exchange working in parallel [236]. There is also evidence for several other
transport mechanisms for SCFA, however, their functional relevance is still
undefined [192,218].

2.1
Cecum

In the cecum Na" absorption takes place in electrogenic and to a small ex-
tend in electroneutral fashion. The mechanism responsible for the consider-
able amount of electrogenic Na* absorption in this colon segment is not
clearly defined. It has been suggested that Na'- or cation-selective channels
with pharmacological properties different from the epithelial Na* channel
ENaC (no inhibition by amiloride) are present in the luminal membrane
[238-240]. Electroneutral Na* absorption is probably coupled to the action
of Na'/H" and CI/HCO3  exchange in the luminal membrane. There is also
evidence for electrogenic HCO5 secretion [115]. For K* secretion in the
cecum K'Cl" cotransport has been proposed [78].

2.2
Proximal Colon

In the proximal part of the colon Na' is absorbed mainly electroneutrally.
Luminal Na'/H" exchange is the predominant Na* uptake mechanism. It
works in parallel with luminal CI/HCO3" exchange. In addition a combined
action of luminal Na*/H" exchange with basolateral Na*(HCO;)(, export
has been proposed [83,237]. Although conductive Na* absorption has been
described, aldosterone increases only electroneutral Na* absorption [66,83].
Another agonist that stimulates electroneutral Na* absorption in the proxi-
mal colon is epinephrine which acts in these epithelial cells via o, adrener-
gic receptors [235]. There is evidence for luminal and basolateral K* con-
ductances which are both stimulated via carbachol with cytosolic Ca** as the
second messenger [231]. Like in the distal colon the total basolateral K*
conductance is decreased after cAMP stimulation [231].
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23
Distal Colon

In the distal colon Na® absorption occurs through electroneutral and elec-
trogenic pathways [233]. Figure 1 shows the respective cell models with the
cellular transport mechanisms. Electrogenic absorption of Na* occurs via
ENaC [27,160] which is located in the luminal membrane of crypt surface
cells. Amiloride directly inhibits this component of Na* absorption at mi-
cromolar concentrations. The amiloride-sensitive Na* conductance in the
distal colon is under control of mineralocorticoids which increase this con-
ductance mostly by post-transcriptional regulation of ENaC via aldosterone-
induced proteins (AIPs) [269].

Another pathway for Na* absorption is the electroneutral Na*/H" ex-
changer [212]. Na'/H" exchange occurs in parallel with CI'/HCO; exchange
[213] resulting in NaCl uptake. There is evidence for the expression of sev-
eral NHE isoforms in colon mucosa [17,173,200,272], NHE1 works as a

Lumen Blood Lumen Blood

: )

Na
ATP
(%H. &
Na*
‘{ Kt——

A.

Fig. 1. Cell models for the mechanisms of transcellular Na* absorption predomi-
nantly located in colon crypt surface cells. A Electroneutral Na* absorption: Na*
enters the cell via Na'/H" exchange in the luminal membrane. Parallel secretion of
HCOj into the lumen by CI/HCO;™ exchange. Formation of CO, in the lumen and
recycling into the cell. On the basolateral side Na' is extruded by Na'+K*-ATPase.
The mechanism of CI” exit is not known at this stage. B Electrogenic Na* absorption:
Na* enters the cell via epithelial Na* channels (ENaC). On the basolateral side Na" is
extruded by Na*+K*-ATPase. K* recycles via basolateral K* channels or leaves the
cell through luminal K* channels. Luminal Na* and K* channels are regulated by
mineralocorticoids and K* metabolism. The lumen-negative transepithelial voltage
provides the driving force for paracellular anion absorption
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housekeeper engaged in pH homeostasis and is located in the basolateral
membrane but it is not involved in Na* absorption in the colon. The precise
localisation and function of NHE2 and NHE3 are still discussed but both
isoforms are the likely candidates to maintain electroneutral colonic Na*
absorption [67,121,184]. Moreover there is low NHE4 expression in the
colon. In addition a Cl'-dependent form of Na*/H" exchanger was postu-
lated for crypt base cells [214]. A variety of agonists act on distal colon
function either directly via the epithelial cells or indirectly via enteric neu-
rones or endocrine cells. They are located in the lamina propria or in the
crypt itself. A summary of these factors and their effects is given in Table 2.

Electrogenic and electroneutral Na* absorption are controlled in oppo-
site direction by aldosterone and glucocorticoids. Elevation of aldosterone
enhances electrogenic Na® absorption and inhibits electroneutral Na*
transport. Glucocorticoids favour electroneutral transport at low concen-
trations and mimic aldosterone action at high concentrations [9,234,265].
The different proportions of electrogenic and electroneutral Na* transport
between species can, in part, be explained by varying aldosterone concen-
trations. They depend on the dietary intake of Na* and K7, i.e. a relatively
high Na" intake in rats and man, and a vegetarian low Na" diet in rabbits.

As mentioned above the distal colon epithelium is moderately tight (ca.
200-400 Qcm®) [35,92] and allows the generation of remarkable transepi-
thelial potential differences of up to -100 mV. Along this transepithelial
electrical driving force paracellular ion transport can occur against existing
concentration gradients.

Secretion mainly occurs in the crypt middle and base. In these cells CI is
secreted transcellularly involving basolateral uptake via the loop-diuretic-
sensitive Na*2CI'’K" cotransporter [70,117] and luminal exit of Cl" via CI
channels. Opening of luminal ClI" channels depolarises the luminal mem-
brane and thereby creates a lumen-negative transepithelial voltage. K"
mainly leaves the cell via basolateral K* channels and thus hyperpolarises
the basolateral membrane providing the driving-force for luminal CI” exit.
Cations follow paracellularly driven by the transepithelial voltage. Baso-
lateral K" recycling is necessary for any electrogenic Cl” secretion in the
colonic mucosa. Inhibition of the respective K* channels blocks electrogenic
CI secretion completely [15,166,280]. The opening of luminal K* channels in
the presence of a luminal CI" conductance causes electroneutral (i.e. paral-
lel) secretion of K* and CI". Figure 2 shows a cell model for electrolyte se-
cretion in the distal colon.

Until now there is only limited information about the properties of the
paracellular pathways in epithelia [92,247] although there has been sub-
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Fig. 2. Cell model for the mechanism of transcellular Cl” secretion predominantly
located in crypt mid and base cells. Cl” leaves the cell via cAMP-activated Cl chan-
nels (CFTR) in the luminal membrane. In parallel K leaves the cell via (mainly
basolateral) K* channels providing the driving force for luminal Cl exit. These K*
channels are differentially regulated by cAMP and Ca’*. The transepithelial voltage
drives paracellular cation secretion. The activation of a luminal K" conductance
under the influence of mineralocorticoids, K* metabolism and agonists acting via
[Ca’"]; determines transepithelial voltage and KCI secretion. Uptake of Cl* occurs
via Na*2CI'’K" cotransport in the basolateral membrane which can be inhibited by
the loop diuretic azosemide (Azo)

stantial progress in the analysis of the structure and architecture of tight
junctions [185]. Targeting, assembly, and phosphorylation of the respective
proteins and their interaction with the cytoskeleton might be involved in
colonic tight junction regulation. In the functional state of Na* absorption
the shunt pathway should be selective for anions, whilst during secretion a
cation selectivity is required. This problem could be solved by different
properties of tight junctions along the crypt axis. Another possibility would
be the differential regulation of colon crypt tight junctions depending on
stimulation of absorption or secretion. In the ileum there is evidence for
cAMP-dependent regulation of the tight junction permeability [I11].
Whether the selectivity properties of colonic crypt tight junctions are regu-
lated and whether they differ along the crypt axis requires further investiga-
tion. Refined techniques to examine this issue are now available [92,93,293].

24
Crypt Axis and Function

The colonic mucosa is formed by colonic crypts. The colonic crypt repre-
sents the smallest functional unit of colonic mucosa and can be divided into
crypt surface, crypt middle, and crypt base. This division has a functional



