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Preface

The prototypical catalytic reductive C-Cbond formations, the Fischer-Tropsch
reaction [1] and alkene hydroformylation [2], were discovered in 1922 and
1938, respectively [3,4]. These processes, which involve reductive coupling to
carbon monoxide, have long been applied to the industrial manufacture of
commodity chemicals [5]. Notably, alkene hydroformylation, also known as
the oxo-synthesis, has emerged as the largest volume application of homoge-
neous metal catalysis, accounting for the production of over 7 million metric
tons of aldehyde annually. Despite the impact of these prototypical reductive
C-C bond formations, this field of research lay fallow for several decades.
Eventually, the increased availability of mild terminal reductants, in partic-
ular silanes, led to a renaissance in the area of catalytic reductive C-C bond
formation. For example, the first catalytic reductive C-C couplings beyond hy-
droformylation, which involve the hydrosilylative dimerization of conjugated
dienes [6-12], appeared in 1969 - approximately 16 years after the first re-
ported metal-catalyzed alkene hydrosilylation [13]. Following these seminal
studies, the field of catalytic reductive C-C bond formation underwent explo-
sive growth, culminating in the emergence of an ever growing body of research
encompassing a powerful set of transformations.

To our knowledge, no thematic volumes devoted solely to metal-catalyzed
reductive C-C bond formation have been assembled. For the first time, in this
issue of Topics in Current Chemistry, we present a compilation of monographs
from several leaders in this burgeoning area of research. This collection of
reviews serves to capture the diversity of catalytic reductive C-C couplings
presently available and, in turn, the remarkable range of reactivity embodied
by such transformations. There is no indication that this field has reached its
zenith and it is the hope of the present author that this volume will fuel further
progress.

Of greatest significance, many of the reductive couplings described in this
account involve the use of carbonyl compounds and imines as coupling part-
ners. Hence, catalytic reductive additions to such conventional electrophiles
herald a departure from the use of preformed organometallic reagents. For
example, the catalytic reductive aldol couplings described in the volume em-
ploy metallo-enolates generated transiently in substoichiometric quantities
under catalytic conditions, representing an alternative to stoichiometrically
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preformed metallo-enolates and related enol derivates. Metal catalyzed reduc-
tive C-C bond formation promises to take organic chemistry beyond stoichio-
metric metallic reagents, thus fortifying a cornerstone of synthetic organic
chemistry - the broad areas of carbonyl and imine addition.

University of Texas at Austin, April 2007 Michael J. Krische
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Abstract The nickel-catalyzed coupling of aldehydes and alkynes has evolved into
a broadly useful procedure for the preparation of allylic alcohols. An overview of the
many variants of the process, illustrations of complex synthetic applications, and a dis-
cussion of mechanism is provided. Additionally, a brief summary of mechanistically
related nickel-catalyzed processes as well as a description of alternate strategies for the
reductive coupling of aldehydes and alkynes using other metals is provided.

Keywords Allylic alcohol - Nickel - Reductive coupling - Reductive cyclization -
Reductive cycloaddition

Abbreviations
COD 1,5-Cyclooctadiene
Cyp Cyclopentyl
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IMes  N,N’-Bis(2,4,6-trimethylphenyl)imidazol-2-ylidene
IPr N,N’-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene
MOM  Methoxy methyl

NHC N-Heterocyclic carbene

TBS t-Butyldimethylsilyl

TES Triethylsilyl

TIPS Triisopropylsilyl

TMEDA Tetramethylethylene diamine

1
Introduction

Allylic alcohols are useful substructures as key subunits embedded within
bioactive natural products as well as versatile precursors for a variety of syn-
thetic transformations. The range of transformations that rely on allylic alco-
hol derivatives include diverse processes such as metal n-allyl chemistry [1],
directed epoxidations [2] and cyclopropanations [3,4], cationic cyclization
processes [5], Sy2’ allylic displacement processes [6], and various sigmat-
ropic processes including Claisen rearrangements and related variants [7].
A number of classical procedures allow efficient synthesis of allylic alcohols,
with the most widely used procedures involving 1,2-reduction of enones or
addition of vinyl organometallics to aldehydes or ketones. In a more contem-
porary strategy, the Hiyama-Nozaki-Kishi coupling [8, 9], which involves the
nickel-catalyzed addition of vinyl halides to aldehydes, has become a bench-
mark procedure that is widely used.

An alternative to these procedures is the direct union of aldehydes and
alkynes in a reductive coupling process (Scheme 1). The primary advantage of
the reductive coupling of aldehydes and alkynes is that the olefin stereochem-
istry, the configuration of the hydroxyl-bearing stereocenter, and the central
carbon-carbon single bond of the product allylic alcohol are all established in
a single operation. The widely used methods described in the previous para-
graph, while very powerful in many applications, each require two or more
steps to establish these key structural features. This review will focus specific-
ally on the development of nickel-catalyzed reductive couplings of aldehydes

o} R3 . Ni(0) OH R*
+ = + M-R —_—
A Ao
R2

reductive coupling, R* = H
alkylative coupling, R* = alkyl

Scheme 1 Reductive coupling of aldehydes and alkynes
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and alkynes [10-13]. Concluding sections will briefly describe mechanisti-
cally related nickel-catalyzed processes as well as summarize methods for
alkyne/aldehyde reductive couplings involving other transition metals.

2
Aldehyde/Alkyne Couplings

The nickel-catalyzed coupling of aldehydes and alkynes was first described
in 1997, and many variants of the process are now known (Scheme 1) [14].
The processes may proceed intermolecularly or intramolecularly to assem-
ble rings ranging from five-membered up to macrocyclic ring systems. Both
alkylative and reductive processes may be performed, with the distinction
involving whether a carbon substituent (alkylative coupling) or hydrogen
substituent (reductive coupling) is installed from the reducing agent. Catalyst
systems involving low valent nickel species stabilized by COD, phosphines, or
N-heterocyclic carbenes (NHCs) are known, with phosphines and NHCs typ-
ically being monodentate. Reducing agents (MR*) typically employed include
silanes, organozincs, organoboranes, or vinylzirconium reagents.

2.1
Reductive Cyclizations

The first examples of nickel-catalyzed reductive couplings of aldehydes
and alkynes involved organozincs as reducing agents (Scheme 2) [14]. In
five-membered ring cyclizations, reductive couplings are effective with
a Ni(COD);/PBujs catalyst system, whereas phosphine-free catalyst formu-
lations favored the alkylative variant. In the phosphine-free conditions,
reactions are rapid and favor the alkylative manifold, even with organoz-
incs that are sp>-hybridized and possess B-hydrogens. Alternatively, with
Ni(COD);,/PBus (1:4) as catalyst, reactions are slower and favor the reduc-
tive manifold with Et;Zn as reducing agent. A metallacycle that may serve
as a common intermediate for both alkylative and reductive manifolds is
depicted, and mechanistic issues are described in more detail in Sect. 3.

Subsequent studies illustrated that Et3SiH and Et;B are more effective re-
ducing agents than Et;Zn in promoting the reductive cyclization pathway.
A number of bicyclic heterocycles were prepared employing the Et3SiH vari-
ant, and the approach proved general for a number of different quinolizidine,
indolizidine, and pyrrolizidine skeletal frameworks (Scheme 3) [15, 16].

In addition to the methodological advances noted above, the Et3SiH vari-
ant was utilized in the total synthesis of three members of the allopumil-
iotoxin family [15, 16]. In one of the more complex examples, ynal substrate 1
was converted to product 2 in 93% isolated yield as a single diastereomer
(Scheme 4). Simple removal of the protecting groups allowed completion of
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A H
[o) R1 LnNI 1
/U\/\/ R®ZnQ R " /R
H 4
Ni(0), L
ZnR?, R?2 = alkyl with B-H

L=PR,
/R2 R2
R2 = alkyl or aryl HO ) R

L, L
o,Ni R! L,Ni
)/ — RZnQ Y, R!
L=THF

H
o) R! EtoZn HO R!
N 4 {
H Ni(COD),, PBug
R'=H (74 %)
R! = CH; (67%)

Scheme 2 Organozinc-mediated reductive cyclizations

R

/|' | J
EtsSiH
N

o) )
Ni(COD),, PBuj “'OSiEt,
H

R = Ph (90%, 98:2 dr)
R = n-CgH13 (83%, 99:1 dr)
R = SiMe3 (93%, 98:2 dr)

1) Swern
N NN
C*VOH 2) EtSiH

Ni(COD), ,PBu

(COD),PBUs 4 OSiEt;

R = Ph (55%, 2 steps)
(85:15 dr)

R = n-CgHy3 (51%, 2 steps)
(91:9dr)

Scheme 3 Triethylsilane-mediated reductive cyclizations
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CHs CHs

HsC.,
3L, o
O7k
| Et;SiH
N~ H Ni(COD),
PBU3
H/~ °©
HzC OBn
1 2 (93%, single diast.)
CH; OH
CHj

H/
HsC OH
(+)-allopumiliotoxin 339A (3)

Scheme 4 Total synthesis of pumiliotoxin 339A

the synthesis of allopumiliotoxin 339A (3). This rapid approach to the pumil-
iotoxin framework provides an illustration of the complexity that can be
installed in a single catalytic operation utilizing the ynal reductive cyclization
method.

The Et;B/PBus and the NHC/Et3SiH variants have largely been applied in
intermolecular approaches, although both variants have been demonstrated
to be useful in macrocyclizations. Elegant total syntheses of amphidinolides
T1 and T4 were illustrated utilizing a complex macrocyclization involving the
Et3B variant (Scheme 5) [17, 18]. Cyclization of ynal 4 with Ni(COD),/PBu;
with Et3B as reducing agent allowed the efficient preparation of allylic al-
cohol 5, which was converted to amphidinolide T1 (6). A key feature of the
approach was the use of an aromatic alkyne, which directed the regiochem-
istry to favor the desired exocyclization process. An attempt to accomplish
an endocyclic macrocyclization in the total synthesis of terpestacin was not
successful since the exocyclic pathway predominated in that case as well.
However, an intermolecular reductive coupling ultimately proved successful
in that strategy (see Sect. 2.2.1).

The complementary regioselectivity of the NHC/Et3SiH and PBuj/Et3B
variants was demonstrated as a strategy for favoring either endocyclic or
exocyclic macrocyclizations selectively in a ligand-controlled approach [19].
With ynal 7 for example, reductive macrocyclization with the very bulky IPr
ligand and Et3SiH as the reducing agent favored exocyclization product 8,
whereas cyclization with PMes as the ligand and Et3;B as the reducing agent
favored endocyclization product 9 (Scheme 6). A steric model was presented,
suggesting that the bulky IPr ligand positions the alkyne in complex 10 such



