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PREFACE TO THE THIRD EDITION

This edition has been thoroughly revised by adding many new problems
with their proofs at the appropriate places.

Modern Algebra-—currently called Abstract Algebra, as it is no
longer modern (!) deals with mathematical structures which are
algebraic in character. Some of these structures are: Groups, Rings,
Fields and Vector Spaces. These algebraic structures are built upon
sets with certain algebraic operations. Our aim in this text is to make
the students acquaint themselves with the basic concepts of some of
these fundamental algebraic structures.

This book which is primarily written for the B.Sc. students of
Mathematics in India is also designed to cater to the needs of students
in allied fields such as Statistics, Physics, Chemistry and Engineering
any may well be used as a reference book by them. We have pre-
sented what is normally expected to be covered in Modern Algebra
for the B.Sc. degree course in as elementary and simple a manner as
possible. While we fully realise the impossibility of our making an
original imprint in an elementary text such as this, we can certainly
make a claim in flooding the book with a volley of motivating
examples and a wide variety of exercises and worked out problems.
Further to aid the reader, we have given hints and solutions to all
the exercises which need non-routine solutions. Also, the book is
divided conveniently into two parts with Linear Algebra, as Part I
and the more abstract concepts such as Groups and Rings forming
Part II, as we believe that Linear Algebra is not only more accessible
to student for an initial study but also provides a simple introduction
to more abstract concepts of Groups and Rings through the Rings of
Linear Transformations, Matrices and Matrix Groups which are intro-
duced in Part L.

Also, in the semesterised pattern of B.Sc. courses in Indian univer-
sities, Part 1 may be had for an earlier semester while Part II can be
done during a subsequent semester.

With many motivating and initiating examples through which
abstract concepts are introduced, it is hoped that this book will be a
readily acceptable companion to both the teacher and the taught.

As quite a few standard and well known examples and exercises are
given at appropriate places, this would be found to be very helpful by
the student from his examination- preparation point.

We are thankful to R. Ganapathy, S. Ramanujam and N. Sridharan
for their help in the preparation of this book.

AUTHORS



uUNA A

A'in X
U
N
X
(aj, ..., an)
{/}
¢
f:A—>B
I
f=H(F)

dim T
Sp<S>
<S>

Ls

L+ M
Lg M
iff, also <
=
Im f
Ker f
Z,N,Q,R, C

Nn, Rn’ Cn

LIST OF SYMBOLS

Is an element of

Is not an element of

Contained in

Contains

Equals

Complement of 4 in X, where ACX

Union

Intersection

Cartesian product

Ordered n-tuple of elements a,, .. , a,

Set with elements in the bracket

Set of elements such that

Empty set or Null set

Map, f, from 4 to B

Inverse map of f

Inverse image of F CC B, for the map f: A— B which
is the subset of 4 of all elements x € 4 such that
f(x) e F.

Dimension of vector space V

Is isomorphic to

Span of the subset S

Subgroup generated by S

Linear span of S, consisting of all finite linear combi-
nations of elements of S.

The set of all sums /+m for / € L and m « M.
Direct sum of L and M

If and only if

Implies

Image of the map f

Kernel of the homomorphism f

The set of all integers, all positive integers, all
rational numbers, all real numbers, all complex
numbers respectively.

Cartesian product of N, R, C respectively taken
n-times.



xii

z*, Q* R* C*

Z, Q" R+

Jfral— fla)
_k
At A, A* 1
for a complex }
matrix 4 J

adj. Afora )
square matrix 4
over a field J

det A fora )
square matrix 4 p
over a field

- 12..n )
P Py D>--.D"

R,foran )

equivalence

relation R on 4 )
Z+iZ

M, (K)

GL (n, R)
SL (n, R)

Z| x], R[X], C[X]

*

LIST OF SYMBOLS.

The set of all non-zero integers, non-zero
rational numbers, non-zero real numbers, non-
zero complex numbers respectively.

The set of all positive integers, positive rational
numbers, positive real numbers respectively.

The map, f, mapping a to f(a).

The identity matrix of order ».

Transpose, complex conjugate, conjugate trans-
pose of A respectively.

Adjoint or Adjugate of A.

Determinant of A

Permutation p of degree n given by the map
p:i—=p;fori=1,2,..,n

The equivalence class R, C A, consisting of all
b € A such that (a, b) € R.

The set of all Gaussian integers, i.e., all complex
numbers m -+ i n for m, n € Z,

The set of all » by n matrices with entries
from K.

The set of all » by n non-singular real matrices
(called the General Linear Group of order n
over R),

The set of all n by n real matrices with determi-
nant 1 (called the Special Linear Group of order
n over R).

The set of all polynomials in X with integral.
real, complex coefficients respectively.

The set of all integers modulo 7.

End of proof.

Over an exercise indicates that it is comparatively
more difficult.
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0

FELEMENTS OF SET THEORY

0.1, PRELIMINARY CONCEPTS

We begin with some basic concepts of set theory. The term set is
used in the sense of every day life. Thus a set 4 stands for a collec-
tion of elements which are such by some definite properties or
description, it is possible to say whether or not an element a belongs
to A. For example, let X denote the set of all books in a book-shop A.
This means that by the defining property given in italics above, it is
possible for us to assert whether an clement a is in X or not.

Let X be a set. If an element a belongs to X, we denote this by
a € X. If an element a does not belong to X, this is denoted by

a & X

When a set is specified by its elements, its elements are enclosed in
cur]y brackets Thus, for example,

= {1, 2, 3,...} denotes the set N of natural numbers.

If Yis a set dnd if each element of Y is also an element of X, Y'is
called a subset of X, denoted by YCXor XDY. Wecall Y a
proper subset of X if Y is a subset of X and Y=£X.

If a set has no element, it is called the null set or empty set and
is denoted by &. The empty set is a subset of every set.

Unless otherwise mentioned, all sets we consider in the succeeding
chapters of this book are to be taken as nonempty.

If X and Y are sets and if YC X, then XY— Y or Y’ in X denotes
the subset, called the complement of Y in X, X—Y consisting of all
those elements @ of X such that a@Y.

Two sets A" and Y are called equal, X==Y, if XC Y and YCJX.

Let XY and Y be sets. The set union of X and Y is the set XU Y of
all those elements ¢ such that « € X or a € Y. For instance, if X de-
notes the set of students of a class of height less than five feet and Y
denotes the set of students of this class of height greater than or
equal to five feet, XU Y denotes the set of all students of this class.

The set intersection of two sets X and Y is the set XNY of all
elements which belong to both the sets X" and Y. For instance, let
X denote the set of factories in an industrial city with at least 500



4 A Textbook of Modern Alectra

male workers. and at least 400 female workers. and let Y denote the
set of factories in the same city with at least 400 male workers and
at least 500 female workers. Then XN} is the set of factories that
employ at lcast 500 male and 500 female workers.

When we have more than two sets, the definitions are made in the
same way as above. For instance, if {X,} 7€ /, with the index i
varying over an indexing set / (which may be quite arbitrary) is a
collection of sets (a more precise term for such an indexed collection
of sets is a family of sets). the set union U X, is the set of all those

izl
elements a such that a € X’ for some index i € 1. Similarly, the inter-
section MY is the set of all those @ such that a € X, for each i € I.
izl

Proposition 0.1.1, For sets A, B, C the following rules are valid:

(i) (AUB)U C = AU (BUQC),
(ANB)NC = AN (BNO),
(it) AUB = BUA ; ANB = BNA.
(iii) (AUB. N C = (ANC) U (BNC),
(ANB) U C = (AUC) N (BUCQC).

Proof. We prove (i). Others can be proved in a similar manner.

Letae(A_B)_ C. Thenae AUBor ae C. Hence a€ A or
B or C. This means that a€ AU (BUC) as this also means as above
that € A or Bor C ie., (AUB) U C C 4 U (BUC). Inthe same
way, it follows that AU (BUC) C (AUB) U C. This proves the
result (7). @

EXERCISE 0.1.2, Prove (ii) and (iii) above.

Propositien 0.1.3. (De Morgan’s Laws). Let {A4,} ie/ be a family
of subsets 4 of a set Y. Then

(i) (UA,) = DA/
izl

iz]
eand (ii) (NA) = UA/,
izl iz

where the complements are taken in the set X.
Proof. We prove (7). The proof of (i7) is similar.
Let x € (UA,)". This means that x & U A:and hence x & 4. for
iz]
any 7 € [. This of course implies that x € A for each i € I ; a fortiori
x €M A/ Thus(u 4,) C(’\ A/ Comeriel\ suppose that x € N4,
iz] i/
Thls means that xed,’ for each ie/ and hence x@&A, for any 7. Thus
x @€ UA, ; whence, x € (U4,)" and this proves that N 4/ C(L A )
icl =l i1 i={ .
Consequently, (UA,) = NA, .
izl ic]
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EXERCISE 0.1.4, Write down the De Morgan's Laws when the
jnd;.\:ing set [is a szt of (i) 2 clements (i7) 3 elements.
FINITION 0,13, A family {X:}, i€l of sets is called disjoint fif the
inters section of any two dlstmct members of the family is empty ie.,
fors, jel, i/, X;UX;, =¢.

9.2, MAPS

DerNITION 0.2.1. A map (mapping or fauction or single-
valued mapping) /' 4—+B8 from a sct 4 to aset Bisarule by
which to each a « A there is assigned a unique element f'(a) € B.

Set A is then called the domain of f.

“or example, if 4 is the set of students of a class X and B is the
set 7" positive integers, a map / : A— B is defined if we set (@) to be
the age of the student a € A.

As another example, Iet 4 be the set of all factories in a country
and 2. the set of positive integers. A map f: A—B is defined if
we set f (@) as the value in rupees of goods produced in the factory
a during a particular year.

- Twomapsf:A->Band g: A->B are called equal if /' (a) = & (a)
for cach a= A.

Let /2 4—B be a map from set A to set B.

SopNimioN 02,20 The image of an clement ¢ = 4, denoted by
7 (), is that element f (a) which is assigned to ¢ under the ruie f.

image of a subset £ of 4 under /: A— B, denoted by f (£),
subset f(E) < B consisting of j (¢) foralla € A. In symbels:
= | f(a) e B ’(IEA'

TINITION 0.2.3. A map f: A—B is called cne-to-one (1-1 or
az-one or injective) if a%q’ in A implies that /' (a') 7 f (<)
or equivalently, f (@) = f(«') implies that a=a').

r\

hus, if /1 A—B is a one-to-one map, no two distinct elements of
A4 can have the same image in B under the map /.

For example, let 4 denote the set of cars registered during last year
in u district X and let B stand for the set of registration numbers of
these cars. Let /: A— B be the map defined by setting f(a) as the
registration number of the car a during last year. Then f is a one-tc-
one map (as no two different cars are given the same registration
number).

On the other hand. if 4 denotes the set of pcople in India and B,
the set of positive integers and if f: A- B is the map defined by
setting f (a) as the age of the person a, then f is clearly not one-to-
one {Correct !).

DrErINITION 0.2.4, A map /: 4—Bis called onto or (surjective)
if foreach h e B, there exists at least one @ € 4 such that [ (a) =
{1.2., the image f(A) = B and not merely f (4) C B.
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REMARK., There may be more than one such a € A4 with
f(a)=0>.

For example, let 4 denote the set of students in a college X and
B denote the set of all classes in this college. Let f: 4—B be the
map where [ («) is the class to which the student @ € 4 belongs.

Then f'is an onto map. (A class in any college exists if only there is
at least one student in it !).

DerinNiTioN 0.2.5. Let f: A—=Band g : B>C be maps. The com-
position of g with f, denoted by gof, is the map gof : 4—C defined
by (gof )@)=g( f(a)) for a ¢ A.

Example 0.2.6. Let R denote the set of real numbers, R* the set of
positive real numbers and let S=R"U{0}. Iff: R-Sand g:S5—-R"
are maps defined by f (r)=r% r € R and g(s)=s+1, s € S, then gof s
defined by (gof') (r) = g( f(r))=g(r*) =r*+1, reR.

Proposition 0.2.7. Composition of maps (when defined) is associa-
tive ie, If f: A—>B, g: B>Cand h: C—D are maps then the two
maps ho(gof') and (hog) of from 4 to D are equal.

The proof is immediate from the fact that for aed, (ho(gof))(a)=
((hog)of Na)=h(g( f (a))).

EXERCISE 0.2.8. Give an example of each of the following:

(a) a one-to-one map which is not onto.

(b) an onto map which is not one-to-ene.

(¢) a one-to-one and onto map.

(d) a map which is neither one-to-one nor onto.

. DEFINITION 0.2.9. Let f: 4—>B be a map. For FCB, the inverse

image f~!(F) of the subset F is defined as the subset of A consisting

jgf( a)ll elements a € 4 such that /() € F. In symbols, f{(F)={a€ 4
a)e Fi.

Proposition 0.2.10. Let f: 4->B. Let E,, E,C 4 and F,, F,CB.

Then the following statements hold:
(i) f(E1U Ez) :f(EJ)Uf(Eﬂ)

(i) fAIE\NE)C(EDNS(E,)

(iii) f ‘](FIUF2) ‘—=f’}(F1:)Uf'](F3)

) [FUENF) =f(F)YN fU(F).

Proof. We prove (/). The proofs of the others follow in a similar
way.

Let b e f(E,UE,). Then there exists an elementa € E;UZ, such
that f(a)=b. As a € E\UE,, a ¢ E, or E,. In cither case, f(a) € F(E,)
UAE,). As b=f{a) is arbitrarily chosen in f(E,UE), it follows that
HEUE)CAE)USE.

To prove the reverse inclusion, let b'e F(E,)U F('Eg). Hence &' €
H(E) or f(E,). If b’ € f(E,), there exists an element « € E;CE,UE:
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such that f(a") =b" and f(a') € f(E,UE,). If b’ & f(E,), then b" € f(E,)
and it follows in a similar manner that 5" € f(E,UE,). Thus f(E)U
AE)CSA(E,UE,) and this proves ().

EXERCISE 0.2.11. Prove (ii), (iif) and (iv) in proposition 0.2.10
above.

REMARK. Note that there is equality in (iv) above while there is,
in general, only inequality in (if).

Example 0.2.12. An example to show that C in (ii) of proposition
0.2.10 above need not always be equality.

Let A={1, 2, 3, 4, 5} and B={6, 7}. Define f: A—=B by f(1)=£(2)
=f(4)=6 and f(3)=f(5)=7. Let Ey={l, 2, 3} and E,={3, 4, 5.
Then E, and E, are subsets of A4 such that f(E))=f(E,)={6, 7,=8
while f(E,NE3) =f({3})={7}. Thus f(E)Nf(E)=B#FC E\NE,)={7}.

DEFINITION. 0.2.13. A family {x;} i € 7, of elements x;in a set £ is
amap x : I—>E(] is called the indexing set of this family) where x;=
image x(i), i e I.

A sequence {x;}, n € N of elements x, of a set £is a map x :
N-E ie., sequence is a family where the indexing set 7 is the set N of
all natural numbers.

0.3. EQUIVALENCE RELATIONS

DErFINITION 0.3.1. A relation R on a set 4 is a set of ordered pairs
(a,, a,) of elements a,, a, of 4.

ReEMARK. The word ‘ordered pair’ refers to the order in which we
write a, and a, i.e., (a;, a,)={(b1, b,) if, and only if, @,=5b, and a,=bhs.
For instance, if as£b in A, (a, b)74(b, a). As the set of all ordered
pairs (a, a’) of elements a, @’ of A is the cartesian product 4 x A (by
definition), a relation on A is nothing but a subset of 4 X A. Hence a
relation may as well be empty.

DEerINITION 0.3.2. An equivalence relation R on a set 4 is a
relation R such that

(i) R is reflexive i.e., for each a € A4, (a, a) € R,

(ii) R is symmetric i.e., whatever be elements a. & in 4 such that
(a,b) € R, then (b, a) € R, and

(7iii) R is transitive i.e., whatever be a, b, ¢ in A such that (e, ) = R
and (b, ¢) € R, then (a, ¢) € R.

For example, let 4 denote the set of all triangles in a plane P. Let
R denote the set of ordered pairs (¢,. 7,) of triangles ¢,. #, in the plane
P such that triangle 7, is congruent to 7, (in the geometrical sense).
From elementary geometry, it follows that R is an equivalence rela-
tion on 4.

DEFINITION 0.3.3. By a partition of a set 4 is meant a division of
the set 4 into mutually disjoint non-empty subsets A4, C A, i€ I, for
some indexing set I. In symbols: For each i€ [, A,C A, AF¢,
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A;NAy=¢ fori#jand 4 = U A, (The scts A; are called the sets of
iz

the partition).

DraxiTioN 0.3.4, Let R be an equivalence relation defined on a
set A. For a € A, the equivalence class of ¢ is the subset R,C4
of all elements b € A such that (¢, b) € R. In symbols:

R.='be A/ (a,b) ¢ R.

THEOREM .3.5. 4n equivalence relation on a set A induces a parti-
tion of A. Conversely, ¢very partition of A defines in a natural way an
equivalence relation on A.

Proof. Let R be an equivalence relation on A. For anv ae A4,
(a, a) € R and hence a ¢ R, (cendition (i) of definition 0.3.2). In
particular R, is non-empty and 4 = U Ra. We claim that if b € Ra,

azA

Ra N R,—¢. For,if ce Ra N K, c € Ra and ¢ € R, ; and therefore,
(a, ¢c) € R, and (b, ¢) and hence by symmetry (¢, b) € R. Thus by
transitivity, (a. ) € R i.e., b€ R4, ¢ contradiction. In other words,
distinct equivalence classes are disjoint and their union is A. This of
course means that the distinct equivalence classes of R form a parti-
tion of 4 where for the indexing set /7 we take the set 7 of equivalence
classes of R.

Conversely, given a partition {4,}, i € I of 4, we define a relation
R on A by setting (2, b)) € R iff @ and b lic in the set 4; of the parti-
tion for the same i€ /. it is then easy to check that R is an equiva-
lence relation on 4 whose equivalence classes are the sets A4; of the
given partition | 4,!, i € I. For instance, to verify symmetry, consider
(a, by € R. Then forsome i el,a, b€ A;, hence b,a€ A, so that
(b, a) € k@

EXERCISE 6.3.6. Verify that the relation R above is reflexive and
transitive.

Example 0.3.7. On the set Z of integers define a relation R by sett-
ing (a,b) € Riff v is congruent to b modulo 5 (in symbols : ¢=b
(mod 5); by this is meant that 5 divides (a—»)). Itis then an easy
matter to check that R is an equivalence relation on Z. The 5 distinct
equivalence classes of R are:

Ry={...,—10, —5,0, 5, 10, ...},
Ry={u, — 9, —4, 1,6, 11, ...},
Ry=1{.., — 8,—3,2,7,12, ..},
Ry={.., — 7,—2,3,8,13, ...}, and
Ry={...,— 6, —1,4,9, 14, ...

These are called congruence classes modulo 5. Clearly they form
a partition of Z. It is further obvious that if we replace 5 by any
fixed non-zero integer n, we still have an equivalence relaticn on Z,
defined as above (namely, (a, b) € R iff n/(a—0b)).



