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Foreword

Dependence is beginning to play an increasingly important role in the world of risk, with
its strong embedment in areas like insurance, financial activities, safety engineering, etc.
While independence can be defined in only one way, dependence can be formulated in an
unlimited number of ways. Therefore, the assumption of independence prevails as it makes
the technical treatment easy and transparent. Nevertheless, in applications dependence is the
rule, independence the exception. Dependence quickly leads to an intricate and a far less
convenient development.

The authors have accepted the challenge to offer their readership a survey of the rapidly
expanding topic of dependence in risk theory. They have brought together the most significant
results on dependence available up to now. The breadth of coverage provides an almost
full-scale picture of the impact of dependence in risk theory, in particular in actuarial science.
Nevertheless, the treatment is not encyclopaedic. In their treatment of risk, the emphasis
is more on the ideas than on the mathematical development, more on concrete cases than
on the most general situation, more on actuarial applications than on abstract theoretical
constructions.

The first three chapters provide in-depth explorations of risk: after dealing with the concept
of risk, its measurement is covered via a plethora of different risk measures; its relative
position with respect to other risks is then treated using different forms of stochastic orderings.
The next three chapters give a similar treatment of dependence as such: modelling of
dependence is followed by its measurement and its relative position within other dependence
concepts. While illustrations come mainly from the actuarial world, these first two parts of
the book have much broader applicability; they make the book also useful for other areas of
risk analysis like reliability and engineering. The last three chapters show a stronger focus
on applications to insurance: credibility theory is followed by a thorough study of bounds
for dependent risks; the text ends with a treatment of risk comparison by using integral
orderings and probability metrics. An asset of the book is that a wealth of additional material
is covered in exercises that accompany each chapter.

This succinct text provides a thorough treatment of dependence within a risk context and
develops a coherent theoretical and empirical framework. The authors illustrate how this
theory can be used in a variety of actuarial areas including among others: value-at-risk,
ALAE-modelling, bonus-malus scales, annuities, portfolio construction, etc.

Jozef L. Teugels

Katholieke Universiteit Leuven, Belgium



Preface

Traditionally, insurance has been built on the assumption of independence, and the law of
large numbers has governed the determination of premiums. But these days, the increasing
complexity-of insurance and reinsurance products has led to increased actuarial interest in
the modelling of dependent risks.

In many situations, insured risks tend to behave alike. For instance, in group life insurance
the remaining lifetimes of husband and wife can be shown to possess a certain degree of
‘positive dependence’. The emergence of catastrophes and the interplay between insurance
and finance also offer good examples in which dependence plays an important role in pricing
and reserving.

Several concepts of bivariate and multivariate positive dependence have appeared in the
mathematical literature. Undoubtedly, the most commonly encountered dependence property
is actually ‘lack of dependence’, in other words mutual independence. Actuaries have so far
mostly been interested in positive dependence properties expressing the notion that ‘large’
(or ‘small’) values of the random variables tend to occur together. Negative dependence
properties express the notion that ‘large’ values of one variable tend to occur together with
small values of the others. Instances of this phenomenon naturally arise in life insurance
(think, for instance, of the death and survival benefits after year k£ in an endowment insurance,
which are mutually exclusive and hence negatively correlated), or for the purpose of
competitive pricing. Note that, in general, a negative dependence results in more predictable
losses for the insurance company than mutual independence. The independence assumption
is thus conservative in such a case. Moreover, assuming independence is mathematically
convenient, and also obviates the need for elaborate models to be devised and statistics to
be kept on mutual dependence of claims.

There is only one way for risks to be independent, but there are of course infinitely many
ways for them to be correlated. For efficient risk management, actuaries need to be able to
answer the fundamental question: is the correlation structure dangerous? And if it is, how
dangerous is the situation? Therefore, tools to quantify, to compare and to model the strength
of dependence between different risks have now become essential.

The purpose of this book is to provide its readership with methods to:

measure risk

compare risks

measure the strength of dependence
compare dependence structures
model the dependence structure.

To illustrate the theoretical concepts, we will give many applications in actuarial science.
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This book is innovative in many respects. It integrates the theory of stochastic orders,
one of the methodological cornerstones of risk theory, the theory of risk measures, the very
foundation of risk management, and the theory of stochastic dependence, which has become
increasingly important as new types of risks emerge.

More specifically, risk measures will be used to generate stochastic orderings, by
identifying pairs of risks about which a class of risk measures agree. Stochastic orderings
are then used to define positive dependence relationships.

The copula concept is examined in detail. Apart from the well-known correlation
coefficient, other measures of dependence are presented, as well as multivariate stochastic
orderings, to evaluate the strength of dependence between risks. We also emphasize the
numerous connections existing between multivariate and univariate stochastic orders.

In the third part of the book, we discuss some applications in actuarial mathematics, We
first review credibility models. In these models, past claims history not only of the risk itself,
but also of related risks, is used to determine the future premium. This method is based
on the serial correlation among the annual claim characteristics (frequencies or severities)
induced by their sharing a common random effect, and on the correlation between ‘related’
risks caused by a similar effect. We describe the kind of dependence induced by credibility
models, and establish numerous stochastic inequalities showing that the classical credibility
construction pioneered by Bithimann produces very intuitive results.

Secondly, we will derive bounds on actuarial quantities involving correlated risks whose
joint distribution is (partially) unknown or too cumbersome to work with. Our focus will be
on stop-loss premiums and Value-at-Risk.

Next, we will present probabilistic distances, and show the close connection between this
theoretical tool and stochastic orderings. In particular, the relevance of probabilistic distances
for the analysis of dependent risks will be demonstrated. B

This book complements our Modern Actuarial Risk Theory (Kaas etal. 2001), which only
scratches the surface of the material found here. Since the traditional actuarial risk theory
assumes independence between the different random variables of interest, the present book
may be thought of as an advanced course on risk theory dropping this hypothesis.

The target audience of this book consists of academics and practitioners who are eager
to master modern modelling tools for dependent risks. The inclusion of many exercises also
makes the book suitable as the basis for advanced courses on risk management in incomplete
markets, as a complement to Kaas ezal. (2001).

Sometimes, we will give proofs only under simplifying assumptions, in order to help the
reader understand the underlying reasoning, bringing out the main ideas without obscuring
them with mathematical technicalities. Some proofs are omitted. Appropriate references to
the literature will guide the readers interested in a more thorough mathematical treatment of
the topic.

Insurance markets are prominent examples of incomplete markets, since the products sold
by insurance companies cannot be replicated by some financial trading strategy. We firmly
believe that this book should be of interest not only to actuaries but more generally to traders
aware that perfect hedges do not exist in reality. The main effect of accounting for market
tncompleteness has indeed been to bring utility theory back into pricing. More generally, it
should bridge quantitative finance and actuarial science.

We would like to thank the Committee on Knowledge Extension Research of the American
Society of Actuaries for financial support, under grant ‘Actuarial Aspects of Dependencies
in Insurance Portfolios’. Thanks also to Virginia Young, the scientific referee of our project,
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for her careful reading of earlier drafts of the manuscript, and her invaluable advice on
matters mathematical and stylistic.

We express our gratitude to Paul Embrechts, Christian Genest, Alfred Miiller and Moshe
Shaked for having read (parts of) the manuscript, and for the numerous remarks they made.
We also thank Professors Frees and Valdez for kindly providing the loss~ALAE data set
used in Chapter 4, which were collected by the US Insurance Services Office (1SO).

Michel Denuit is grateful for the financial support of the UCL Fonds Spéciaux de
Recherche (under projects ‘Tarification en assurance: Vers une nouvelle approche intégrée’
and ‘Nouvelles méthodes de gestion des risques assurantiels et financiers’) and the Belgian
Fonds National de la Recherche Scientifique (Crédit aux Chercheurs ‘Dépendances entre
risques actuariels et financiers’). This work was also partly supported by the contract
‘Projet d”Actions de Recherche Concertées’ nr 98/03-217 from the Communauté Frangaise
Wallonie-Bruxelles.

Jan Dhaene and Marc Goovaerts acknowledge the financial support of the
Onderzoeksfonds K.U. Leuven (GOA/Q2 ‘Actuariéle, financiéle en statistische aspecten van
afhankelijkheden in verzekerings- en financi€le portefeuilles’).

Finally, we would like to express our gratitude and appreciation to all those with
whom we have had the pleasure of working on problems related to this book: Hélene
Cossette, Christian Genest, Hans Gerber, Angela van Heerwaarden, Bart Kling, Claude
Lefévre, Etienne Marceau, Alfred Miiller, Marco Scarsini, Mhamed Mesfioui, Moshe Shaked,
Sergei Utev, Shaun Wang and Virginia Young.

Michel Denuit
Jan Dhaene

Marc Goovaerts
Rob Kaas

Louvain-la-Neuve, Leuven and Amsterdam

Supplementary material for this book can be found at http://www.actu.ucl.ac.be/staff/
denuit/mdenuit.html
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Certum est quia impossible est
Tertullian, AD 200
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