Jane Cleland-Huang - Orlena Gotel
Andrea Zisman Editors

| Software and
- Systems Traceability

@_ Springer

Jane Cleland-Huang - Orlena Gotel -
Andrea Zisman Editors

Software and Systems
Traceability

Foreword by Anthony Fink Jﬂ‘%}é?)
¥ \ -

I, - -‘F‘S

@ Springer

Editors

Jane Cleland-Huang Orlena Gotel
DePaul University New York
School of Computing NY 10014
243 S. Wabash Avenue USA

60604 Chicago

olly @gotel.net

USA
jhuang @cs.depaul.edu

Andrea Zisman

City University

School of Informatics
London

United Kingdom
a.zisman@soi.city.ac.uk

ISBN 978-1-4471-2238-8 e-ISBN 978-1-4471-2239-5
DOI 10.1007/978-1-4471-2239-5
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2011941143

© Springer-Verlag London Limited 2012

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.

The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of
a specific statement, that such names are exempt from the relevant laws and regulations and therefore
free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Requirements and Relationships: A Foreword

Software engineering is a pessimistic discipline. The glass is always half empty
rather than half full. Not surprising really, we are hardened to the grind of improving
quality, painstakingly testing and, never quite, eliminating bugs. Critical review is
of the essence. We know there is “no silver bullet”.

Traceability in software development must however, pessimism set aside, be
marked as a success. We have characterised the problem. We have produced indus-
trial strength tools that relieve a substantial part of the practical difficulties of
managing traceability relations across different documents. We have arrived at
a communal consensus regarding the principal notations to be used in software
development, realised in UML, and characterised the relationships amongst these
notations. These are all significant practical advances.

Research has gone further. One of the key challenges of traceability has been the
return on investment. In essence only a few of the traceability links prove to be of
value, that is are subsequently needed in support of a change. It is difficult to predict
in advance however, which these might be. Given that establishing, documenting
and managing traceability manually is expensive, the balance of costs and bene-
fits is delicate one. It has been shown, convincingly in my view, that off-the-shelf
information retrieval techniques will, with some judicious tuning, yield reasonable
traceability links. I expect this, once industrially hardened and deployed, to drive
cost reduction.

I guess with all this positivity you can sense a “but” coming ... and you are not
wrong. While we have taken steps to advance the state of the art, the nature of the
requirements challenge has shifted. The context has altered. Agile development has
altered the way that much software is developed (just in case there is any remaining
doubt, it is no longer a phenomenon of the programming fringe — it is mainstream
software engineering). But agile development is really only a particular manifesta-
tion of the underlying trends in which it is becoming clear that it is cheaper to build
software quickly, and change it if it fails to satisfy the emerging requirements, than
to undertake the discipline of trying to get it exactly right at the outset. This is partly
a technical change, the product of improved tools, environments and programming
languages, but may also reflect changing business environments, that move at a pace
set by a dynamic globalised economy. So we start with more change, indeed with

vi Requirements and Relationships: A Foreword

constant change, not simply as an unwanted consequence of the inexorable laws of
software evolution but embraced as the essence of software engineering.

More change means a greater need for traceability support. Of course, if you have
adopted an agile approach you could argue that there is less to trace to, after all you
have in large part eschewed documentation. This, I believe, is an error because it
ignores the consequentially altered nature of the requirements task. I will elaborate
below.

We have tended to view requirements as a discrete task in which we engage with
the customer (a sort of shorthand for stakeholders) on an occasional basis. We are
not, any longer, so naive as to believe that requirements elicitation is a one-shot
process, but we still understand it to be something that happens from time to time,
for clearly specified purposes.

Change changes things. Requirements engineering becomes instead a “rela-
tional” process in which the name of the game is continuing customer engagement.
In other words, the developer tries to ensure that their application or service grows
and adapts in sync with, ideally at the leading edge of, the customer’s business. You
could say the software is a manifestation of the relationship achieved through contin-
uous interaction and immersion in the business. Managing this ongoing relationship
and the associated knowledge of the domain is difficult and demands, 1 suggest,
a different approach on the part of the software developer and a reimagining of
requirements elicitation, specification and validation.

So, where does requirements traceability fit into this picture? It provides the
information management support for these complex multi-threaded customer rela-
tionships and the technical substrate for rapid system evolution. It allows the
developer to understand and account for the consequences of ongoing system
change in terms of the business. It is the core of a new type of “customer relationship
management” system.

I wish I had a better sense of what the new technical demands that follow from
the change of view, sketched above, might be. Many of the colleagues, whose work
makes up this volume, are better equipped than I am to do this.

Of course, there remains a hard core of large systems development characterised
by strong safety and other constraints and bound to the co-development of com-
plex hardware where the agility sketched above has limited impact. Defence and
other mission-critical systems exemplify this. There is a continuing need to address
traceability in this setting and in particular to support navigation of the complex
relationships that arise. Of particular interest, and relevant in the light of the analysis
above, are regulatory and compliance processes that engage a demanding framework
of requirements and shifting body of stakeholders. This still remains at the edge of
what can be practically accomplished and will require further research. This book
sheds strong light on the challenges.

I am certain that the technical achievements marked in this volume are the basis
for addressing these new frontiers for software and systems engineering and that
requirements traceability will be at the forefront of engineering research. Not so
pessimistic, really.

London, UK Anthony Finkelstein

Preface

The importance of traceability is well understood in the software engineering com-
munity and adopted across numerous software development standards. Industries
are often compelled to implement traceability practices by government regulations.
For example, the U.S. Food and Drug Administration (FDA) states that traceability
analysis must be used to verify that a software design implements all of its speci-
fied software requirements, that all aspects of the design are traceable to software
requirements, and that all code is linked to established specifications and estab-
lished test procedures. Other examples are found in the U.S. Federal Aviation
Administration (FAA) that states that software developers need to have ways of
demonstrating traceability between design and requirements, and in the Capability
Maturity Model Integration (CMMI) standard that requires similar traceability
practices.

Traceability supports numerous critical activities. For example, pre-requirements
traceability is used to demonstrate that a product meets the stakeholders’ stated
requirements, or that it complies with a set of government regulations. Traceability
is also used to establish and understand the relationships between requirements and
downstream work products such as design documents, source code, and test cases.
In this context, it supports tasks such as impact analysis which helps developers
understand how a proposed change impacts the current system, and code verifica-
tion which identifies superfluous and unwanted features by tracing all elements of
the source code back to specific requirements. Traceability can also support reuse of
parts of a software system by identifying the parts that match (new) requirements,
and the evolution of software systems.

In practice, traceability links are typically created and maintained either through
the use of a requirements management tool, or else in a spreadsheet or Word docu-
ment directly. However, there are numerous issues that make it difficult to achieve
successful traceability in practice. These issues include social ones related to com-
munication between project stakeholders, as well as technical issues related to
physically creating, maintaining, and using thousands of interrelated and relatively
brittle traceability links. As a result, many organisations struggle to implement and
maintain traceability links, even though it is broadly recognised as a critical element
of the software development life cycle.

vii

viii Preface

In order to overcome the significant challenges in creating, maintaining, and
using traceability, over the last 20 years the research community has been actively
addressing traceability issues through the exploration of topics related to automating
the traceability process, developing strategies for cost-effective traceability, support-
ing the evolution and maintenance of traceability links, visualising traceability, and
developing traceability practices that apply across a wide range of domains such as
product lines, multi-agent systems, safety critical applications, aspect-oriented and
agile software development, and various regulated industries.

Several workshops and symposia have been organised by the traceability commu-
nity to bring together researchers and practitioners in order to address the challenges
and discuss state-of-the-art work in the area of traceability. These events include
the Traceability in Emerging Forms of Software Engineering (TEFSE) workshop
series'; and the workshops funded by NASA (held at NASA’s IV&V facility in
2006) and the NSF (held in Lexington, Kentucky in 2007 in conjunction with
TEFESE 2007) that resulted in the creation of a draft Problem Statement and Grand
Challenges document.

Another effort of the community was the creation of the International Center of
Excellence for Software Traceability (CoEST) in 2005. The main goals of CoEST
are to promote international research collaborations; advance education in the trace-
ability area; bring together researchers, practitioners, and experts in the field; create
a body of knowledge for traceability; develop a repository of benchmarks for trace-
ability research; and develop new technologies to satisfy traceability needs. More
recently, the community has also engaged in the Tracy project, funded by the NSF,
with the focus of building research infrastructure, collecting and organising datasets,
establishing benchmarks, and developing a tool named TraceLab to provide support
for designing and executing a broad range of traceability experiments.

This book complements the current effort of the traceability community by pro-
viding a comprehensive reference for traceability theory, research, and practice and
by presenting an introduction to the concepts and theoretical foundations of trace-
ability. Several topics in this book represent areas of mature work, which have
previously only appeared as research papers in conference proceedings, journals,
or individual book chapters. The book therefore serves as a unifying source of
information on traceability. As such, we expect the book to serve as a reference
for practitioners, researchers, and students. Practitioners reading the book may be
especially interested in the mature areas of traceability research, several of which
have already been demonstrated to work in industry through various pilot studies,
while researchers from all areas of the community may be specifically interested in
the cutting edge nature of several topics and the open research challenges that need
to be addressed in the future. Students new to the topic should start with a review of
the fundamentals in the chapter “Traceability Fundamentals™.

' TEFSE 2002: Edinburgh, UK; TEFSE 2003: Montreal, Canada; TEFSE 2005: Long Beach, CA;
TEFSE 2007: also known as the Grand Challenges of Traceability, Lexington, Kentucky; TEFSE
2009, Vancouver, Canada; TEFSE 201 1: Honolulu, Hawaii.

Preface ix

The book contains 16 chapters organised in five Parts. Part I — Traceability
Strategy describes several traceability terms and concepts, and the activities related
to traceability planning and management. Part Il — Traceability Creation presents
a variety of techniques for supporting the creation of trace links. These techniques
include the use of Information Retrieval and rule-based methods, an account of the
factors that impact traceability creation, methods to create traceability together with
the development of software systems, and techniques for traceability creation among
heterogeneous artifacts. Part Il — Traceability Maintenance presents approaches
that support traceability in evolving projects in the domains of product line systems
and model-driven engineering, as well as the role of the human in the traceabi-
lity process. Part IV — Traceability Use describes the employment of traceability in
agile projects, aspect-oriented software development, non-functional requirements,
and medical devices. Part V — Traceability Challenges presents the outstanding
challenges for traceability research and practice, based on a community vision for
traceability in 2035, and discusses the open traceability research topics that need to
be addressed in the future.

The book also provides a copy of a glossary of traceability terms created by
members of the traceability community and used in the material described in the
various chapters of the book. The topics presented in these various chapters are
illustrated by two case studies in the areas of electronic health care and mobile
phone product line systems. The book also provides an overview of the Center of
Excellence for Software Traceability and the TraceLab tool. All the above materials
are presented in five different appendices in the book.

This book is the product of several years of effort. Andrea Zisman first conceived
of the idea in early 2009 and the finished product was brought together in its current
form as the result of numerous emails, skype calls, and face-to-face discussions
between all three of the editors.

Obviously, any book of this nature demands the contributions and efforts of many
different people. This book was no different, and we would like to thank members of
the traceability community for their willingness to contribute their time and effort
to make this book possible. The process of collecting material for the book was
initiated by a call for abstracts in June 2010. At that time, we selectively invited
the most promising abstracts for submission as full chapters, and also reached out
to request additional chapters for a few missing topics. All submitted chapters went
through a rigorous peer-review process and, as a result, we selected the chapters
that are presented in this book. We thank the authors of all abstracts and chapters
for their contributions to this process.

Chicago, USA Jane Cleland-Huang
New York, USA Orlena Gotel
London, UK Andrea Zisman

Acknowledgments

We would like to thank the following people for their contributions.

Melissa Huang for her illustrations of Traceability Strategy, Traceability
Creation, Traceability Maintenance, Traceability Use, Traceability Challenges, and
the Appendices, which appear in each of the six sectional headers respectively.

Aleksandra Waliczek for managing the logistics of coordinating the final process
of collecting chapters and supporting material from the authors and for integrating
all of the material into the draft version of the book for delivery to Springer.

John Van Ort for compiling author information.

The US National Science Foundation (NSF) for partially funding community
work on the Grand Challenges of Traceability, CoEST (Center of Excellence for
Software Traceability), and TraceLab under grants CNS 0959924 and 0647443.

The US National Aeronautics and Space Administration (NASA) for providing
initial seed funding for CoEST and for the first workshop on the Grand Challenges
of Traceability under grant NNX06AD02G.

All of the authors who contributed abstracts and/or full chapters as a result of the
initial call for chapters.

The anonymous reviewers, without whom this peer-reviewed book would not be
possible.

Xi

Contributors

Nasir Ali DGIGL, Ecole Polytechnique de Montréal, Montréal, QC, Canada,
nasir.ali@polymtl.ca

Giuliano Antoniol Ecole Polytechnique de Montréal, Montréal, QC, Canada,
antoniol @ieee.org

Hazeline U. Asuncion Computing and Software Systems, University of
Washington, Bothell, WA, USA, hazeline @u.washington.edu

John Burton Vitalograph Ireland Ltd., Ennis, Ireland,
John.burton@vitalograph.ie

Valentine Casey Regulated Software Research Group, Lero, Dundalk Institute of
Technology, Dundalk, Ireland, Val.casey @dkit.ie

Jane Cleland-Huang DePaul University, School of Computing, 60604 Chicago,
USA, jhuang@cs.depaul.edu

Gerry Coleman Regulated Software Research Group, Lero, Dundalk Institute of
Technology, Dundalk, Ireland, Gerry.coleman @dkit.ie

Wouter De Borger DistriNet Research Group, K.U. Leuven, B-3001 Heverlee,
Belgium, wouter.deborger@cs.kuleuven.be

Alex Dekhtyar Cal Poly State University, San Luis Obispo, CA, USA,
dekhtyar@calpoly.edu

Andrea De Lucia University of Salerno, Fisciano (SA), Italy, adelucia@unisa.it

Peter Donnelly Regulated Software Research Group, Lero, Dundalk Institute of
Technology, Dundalk, Ireland, Peter@biobusinessni.org

Alexander Egyed Johannes Kepler University, Linz, Austria,
alexander.egyed @jku.at

Anthony Finkelstein University College London, London, UK,
a.Finkelstein@cs.ucl.ac.uk

XV

XVvi Contributors
Holger Giese Hasso-Plattner-Institute at the University of Potsdam, 14482
Potsdam, Germany, holger.giese @hpi.uni-potsdam.de

Orlena Gotel New York, NY 10014, USA, olly@gotel.net

Paul Griinbacher Systems Engineering and Automation, Johannes Kepler
University, Linz, Austria, paul.gruenbacher @jku.at

Yann-Giel Guéhéneuc DGIGL, Ecole Polytechnique de Montréal, Montréal,
QC, Canada, yann-gael.gueheneuc @polymtl.ca

Jane Huffman Hayes University of Kentucky, Lexington, KY, USA,
hayes@cs.uky.edu

Regina Hebig Hasso-Plattner-Institute at the University of Potsdam, 14482
Potsdam, Germany, regina.hebig @hpi.uni-potsdam.de

Wolfgang Heider Christian Doppler Laboratory for Automated Software
Engineering, Johannes Kepler University, Linz, Austria, heider@ase.jku.at

Claire Ingram Newcastle University, NE1 7RU, England, UK,
claire.ingram@ncl.ac.uk

Waraporn Jirapanthong Faculty of Information Technology, Dhurakij Pundit
University, Bangkok 10210, Thailand, waraporn.jir@dpu.ac.th

Wouter Joosen DistriNet Research Group, K.U. Leuven, B-3001 Heverlee,
Belgium, wouter.joosen @cs.kuleuven.be

Bert Lagaisse DistriNet Research Group, K.U. Leuven, B-3001 Heverlee,
Belgium, bert.lagaisse @cs.kuleuven.be

Martin Lehofer Siemens VAI Metals Technologies, Linz, Austria,
martin.lehofer@siemens.com

Patrick Méder Institute for Systems Engineering and Automation (SEA),
Johannes Kepler University, Linz, Austria, patrick.maeder @jku.at

Jonathan Maletic Kent State University, Kent, OH, USA, jmaletic@cs.kent.edu

Andrian Marcus Wayne State University, Detroit, MI 48202, USA,
amarcus @wayne.edu

Fergal Mc Caffery Regulated Software Research Group, Lero, Dundalk Institute
of Technology, Dundalk, Ireland, Fergal.McCaffery @dkit.ie

Andrew Meneely Department of Software Engineering, Rochester Institute of
Technology, andg @se.rit.edu

Mehdi Mirakhorli Depaul University, Chicago, IL, USA, m.mirakholi@acm.org

Rocco Oliveto University of Molise, Pesche (IS), Italy, rocco.oliveto@unimol.it

Contributors Xvii

Denys Poshyvanyk The College of William and Mary, Williamsburg, VA 23185,
USA, denys@cs.wm.edu

Rick Rabiser Christian Doppler Laboratory for Automated Software
Engineering, Johannes Kepler University, Linz, Austria, rabiser@ase.jku.at

Steve Riddle Newcastle University, NE1 7RU, England, UK,
steve.riddle@ncl.ac.uk

Andreas Seibel Hasso-Plattner-Institute, The University of Potsdam, 14482
Potsdam, Germany, andreas.seibel @hpi.uni-potsdam.de

M.S. Sivakumar Regulated Software Research Group, Lero, Dundalk Institute of
Technology, Dundalk, Ireland, Smadh09 @studentmail.dkit.ie

Ben Smith Department of Computer Science, North Carolina State University,
Raleigh, NC 27695-8206, USA, bhsmith3 @ncsu.edu

Richard N. Taylor Institute for Software Research, University of California,
Irvine, CA, USA, Taylor@ics.uci.edu

Laurie Williams Department of Computer Science, North Carolina State
University, Raleigh, NC 27695-8206, USA, lawilli3@ncsu.edu

Andrea Zisman School of Informatics, City University London, London,
EC1V OHB, UK, a.zisman@soi.city.ac.uk

Contents

PartI Traceability Strategy

Traceability Fundamentals
Orlena Gotel, Jane Cleland-Huang, Jane Huffman Hayes,

Andrea Zisman, Alexander Egyed, Paul Griinbacher,

Alex Dekhtyar, Giuliano Antoniol, Jonathan Maletic, and Patrick Mader

Cost-Benefits of Traceability
Claire Ingram and Steve Riddle

Acquiring Tool Support for Traceability
Orlena Gotel and Patrick Méder
Part I Traceability Creation

Information Retrieval Methods for Automated Traceability Recovery
Andrea De Lucia, Andrian Marcus, Rocco Oliveto, and Denys Poshyvanyk

Factors Impacting the Inputs of Traceability Recovery Approaches . . .
Nasir Ali, Yann-Gaél Guéhéneuc, and Giuliano Antoniol

Automated Techniques for Capturing Custom Traceability
Links Across Heterogeneous Artifacts
Hazeline U. Asuncion and Richard N. Taylor

Using Rules for Traceability Creation
Andrea Zisman
Part III Traceability Maintenance

Ready-to-Use Traceability on Evolving Projects
Patrick Mider and Orlena Gotel

Evolution-Driven Trace Acquisition in Eclipse-Based Product
Line Workspaces
Wolfgang Heider, Paul Griinbacher, Rick Rabiser, and Martin Lehofer

71

99

xiii

Xiv Contents

Traceability in Model-Driven Engineering: Efficient
and Scalable Traceability Maintenance 215
Andreas Seibel, Regina Hebig, and Holger Giese

Studying the Role of Humans in the Traceability Loop 241
Alex Dekhtyar and Jane Huffman Hayes

Part IV Traceability Use

Traceability in Agile Projects 265
Jane Cleland-Huang

Traceability Between Run-Time and Development Time Abstractions . 277
Wouter De Borger, Bert Lagaisse, and Wouter Joosen

Tracing Non-Functional Requirements 299
Mehdi Mirakhorli and Jane Cleland-Huang

Medical Device Software Traceability 321
Fergal Mc Caffery, Valentine Casey, M.S. Sivakumar,
Gerry Coleman, Peter Donnelly, and John Burton

Part V Traceability Challenges

The Grand Challenge of Traceability (v1.0) 343
Orlena Gotel, Jane Cleland-Huang, Jane Huffman Hayes,

Andrea Zisman, Alexander Egyed, Paul Griinbacher,

Alex Dekhtyar, Giuliano Antoniol, and Jonathan Maletic

Appendicesl 411
Appendix A: Glossary of Traceability Terms (v1.0) 413
Appendix B: iTrust Electronic Health Care System Case Study 425

Appendix C: Mobile Phone Product Line Software System Case Study . 439
Appendix D: The Center of Excellence for Software Traceability 483
Appendix E: TraceLab — A Tool for Supporting Traceability Research . 485
INABEX . : . it s masesss srammesins s s imonanssss 487

Part 1
Traceability Strategy

Traceability needs to be planned for and managed if it is to be effective and remain
effective in any particular project context. Stakeholders need to be identified and
requirements determined. A suitable traceability process needs to be designed and
potential support from tooling explored. However, all this initial effort is mute if
there is no clear understanding of the anticipated return on investment from imple-
menting traceability within an organisation. Traceability strategy comprises all those
activities associated witn traceability planning and traceability management.

In this first part of the book, the chapter “Traceability Fundamentals™ defines a
number of traceability-related terms and concepts, as they will be used through-
out the remainder of the book. A simple process for analysing the cost-benefit
of traceability and selecting a strategy accordingly is described in the chapter
“Cost-Benefits of Traceability”. A cautionary seven-step guide for making informed
decisions about tool acquisition is presented in the chapter ““Acquiring Tool Support
for Traceability”. In combination, the chapters “Cost-Benefits of Traceability” and
“Acquiring Tool Support for Traceability” highlight important considerations to
help plan and manage traceability in practice.

Traceability Fundamentals

Orlena Gotel, Jane Cleland-Huang, Jane Huffman Hayes, Andrea Zisman,
Alexander Egyed, Paul Griinbacher, Alex Dekhtyar, Giuliano Antoniol,
Jonathan Maletic, and Patrick Méder

1 Introduction

The role of traceability was recognised in the pioneering NATO working conference
held in 1968 to discuss the problems of software engineering (Naur and Randell,
1969). One of the working papers in this conference examined the requirements for
an effective methodology of computer system design and reported on the need to be
able to ensure that a system being developed actually reflects its design. In a critique
of three early projects focused on methodology, each was praised for the emphasis
they placed on making “the system that they are designing contain explicit traces of
the design process” (Randell, 1968).

Traceability was subsequently noted as a topic of interest in one of the earli-
est surveys on the state of the art and future trends in software engineering (Boehm,
1976), and its practice was certainly evident in those domains concerned with devel-
oping early tool support (Dorfman and Flynn, 1984; Pierce, 1978). By the 1980s,
traceability could be found as a requirement in a large number of national and
international standards for software and systems development, such as the high-
profile DOD-STD-2167A (Dorfman and Thayer, 1990). Published research began
to proliferate and diversify in the area of traceability in the late 1990s, spurred some-
what by renewed interest in the topic arising from two newly formed International
Requirements Engineering professional colloquia, with two early papers focusing
on the issues and problems associated with traceability (Ramesh and Edwards,
1993; Gotel and Finkelstein, 1994), the latter providing for the first systematic
analysis of the traceability problem. The topic of traceability continues to receive
growing research attention in the twenty-first century, with a particular focus on
automated trace generation (Cleland-Huang et al., 2007; Hayes et al., 2006) and
with concomitant advances in model-driven development (Aizenbud-Reshef et al.,
2006; Galvao and Goknil, 2007; Winkler and von Pilgrim, 2010).

0. Gotel (=)
New York, NY 10014, USA
e-mail: olly @gotel.net

J. Cleland-Huang et al. (eds.), Software and Systems Traceability, 3
DOI 10.1007/978-1-4471-2239-5_1, © Springer-Verlag London Limited 2012

