/

_f Microsoft” BASIC |
" Using Modular Structure

Julia Case Bradley i
| ’41’7:/;
.

L1, /

Microsoft” BASIC
Using Modular Structure

Julia Case Bradley

Mt. San Antonio College

=
=
=

|

n Publishers

o=
53
80

£ 3

. Bro
e

weh group

H

Wm. C. Brown Chairman of the Board
Mark C. Falb President and Chief Executive Officer

Wm. C. Brown Publishers, College Division
Lawrence E. Cremer President

James L. Romig Vice-President, Product Development
David A. Corona Vice-President, Production and Design
E. F. Jogerst Vice-President, Cost Analyst

Bob McLaughlin, National Sales Manager

Catherine M. Faduska Director of Marketing Services
Craig S. Marty Director of Marketing Research
Marilyn A. Phelps Manager of Design

Eugenia M. Collins Production Editorial Manager
Mary M. Heller Photo Research Manager

Book Team

Edward G. Jaffe Executive Editor

Nicholas Murray Senior Editor

Nova Maack Associate Developmental Editor
Mark D. Hantelmann Designer

Jean R. Starr Production Editor

Carla Arnold Permissions Editor

Photo Credits pages 4, 5: © James L. Shaffer; page 6:
Courtesy, Apple Computer, Inc.

Cover photograph by Bob Coyle

Copyright © 1986 by Wm. C. Brown Publishers. All rights reserved

Library of Congress Catalog Card Number: 85-72275
ISBN 0-697-00455-4

No part of this publication may be reproduced, stored in a

retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise,

without the prior written permission of the publisher.

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

Preface

Structured
Programming

Microsoft BASIC

Extensive
Appendixes

This textbook is intended for use in an introductory course in BASIC, which assumes
no prior knowledge of computers or programming. The fundamentals of programming
are taught in a style consistent with current thinking in the computing field. The stu-
dent programmer will learn good techniques from the start, rather than having to alter
habits that are already formed.

The primary feature of the text is the development of well-structured, modular pro-
grams. Program modules are implemented with subroutines by the early introduction
of the GOSUB statement. Appearing throughout the text are complete example pro-
grams that are models of good programming style—meaningful variable names; com-
plete remarks including a dictionary of variable names, program mainline and
subroutines; clear, consistent indentation; and control structures limited to the three
“proper” constructs—sequence, selection, and iteration. The students are not taught
to program with the GOTO statement at all.

The dialect of BASIC chosen is Microsoft BASIC. This selection was made for several
important reasons. Microsoft BASIC

1. has the statements allowing for the implementation of the three structured
constructs. Specifically, with the inclusion of the IF-THEN-ELSE and
WHILE/WEND, programs can be written without the use of the GOTO.

2. is the most common version of BASIC in use on microcomputers.

3. is the BASIC supplied with the personal computers manufactured by IBM,
DEC, Texas Instruments, AT &T, and the many “compatibles,” “look-alikes,”
and “work-alikes.”

4. allows formatting of program output with the PRINT USING statement.

5. provides a method for storage and retrieval of data in disk files.

The inclusion of necessary reference material in the appendixes will do away with the
need for most additional, supplementary material generally needed in programming
courses. By limiting the dialect of BASIC to that used only on microcomputers running
CP/M or MS-DOS, the text can then cover the system commands necessary to operate
in those environments. The appendixes include:

1. Edit Mode for Microsoft BASIC (both for the single line editor and the full-
screen line editor)

BASIC commands

CP/M and MS-DOS commands

Debugging techniques

Discussion and examples of ways to control the special functions of printers
Answers to the many feedback questions interspersed throughout the text

S L

Interactive
Program Style

Data File Handling

Complete Chapter
Summaries

Program Planning
with Flowcharts,

Pseudocode, and
Hierarchy Charts

A list of the reserved words in Microsoft BASIC
The ASCII code

Error trapping
CHAIN and COMMON

S 0o~

The programming emphasis is on interactive program style using menus, good screen
design, and input data validation. The INPUT statement is the first method covered
for entering data into programs. Not until students are accustomed to interactive pro-
grams are the READ and DATA statements covered. Since the majority of software
implemented on microcomputers is interactive, it makes sense to learn programming
in this manner.

This text goes well beyond most in the area of data file handling. Chapter 12 covers
file concepts and gives extensive coverage of sequential files, including creation, re-
trieval, and appending data. Chapter 13 covers random data files and shows examples
of random and sequential retrieval, updating, and reporting. In chapter 14, indexed
files are discussed, and a complete example included illustrating the creation and main-
tenance of an indexed file. Sequential file updates are also covered in Chapter 14.

At the conclusion of each chapter is a comprehensive list of topics covered in the chapter.
During extensive classroom testing of the manuscript, this was one of the most popular
features. Although a few of the more advanced students read only the summary, most
students used the summaries to review the material, for reference to look up topics and
terms, and to study for exams. Professors found them a concise source of exam ques-
tions.

The important topic of program planning is covered completely using the three most
popular planning tools. Although the trend in the industry is toward dropping the use
of flowcharts and switching to either pseudocode or hierarchy charts (or a combination
of the two), many students benefit from the visual presentation of program logic af-
forded by flowcharts. By including all three methods, the student can select the method
most beneficial to him or her—and the professor has the choice of methods to use in
class.

Significant Changes (improvements) in the traditional sequence of topics

1. Early coverage of subroutines.

Early (chapter 2), programs are broken into modules using subroutines.
Throughout the text programs are written in a modular style, stressing the
concept of good module design.

2. Coverage of looping before selection.

The concept of conditions is presented in the context of controlling loop
execution rather than selecting alternate courses of action. The student can
easily grasp simple program loops without the necessity of the IF-THEN and
IF-THEN-ELSE. With this order of topics, programs can be more meaningful
sooner.

3. Usage of the WHILE/WEND for most program loops.

Until chapter 9, all program loops are formed with the WHILE and
WEND. The FOR/NEXT is introduced just before array handling, mainly as
an aid to subscript manipulation. Any loop that must be terminated early is
always coded with WHILE/WEND, and never does execution branch out of a
loop with a GOTO or IF-THEN branch.

Preface

4. Early coverage of PRINT USING and LPRINT USING.

The first programs involving program loops (chapter 3) also include
formatting the output with (L)PRINT USING. In this way, the student
programmer may create pleasing, properly aligned output.

5. Early coverage of structured programming guidelines.

The first program examples are coded in a consistent, structured style
without giving the complete rationale. Then, as soon as the student has learned
enough to understand the terms (chapter 5), a complete coverage of structured
programming and top down programming is presented. This is far superior
either to having a late chapter (after the student has developed a
programming style) or an early chapter (before the student can understand the
terms) devoted to structured programming concepts.

Numerous Examples and Programming Exercises Each chapter has one complete
programming example, showing the program planning, program coding, and output.
Additionally, many smaller examples are included throughout the text.

Feedback Questions and Exercises Interspersed at appropriate points are thought-
provoking questions and exercises to test student learning. Answers are found in an
appendix.

BASIC Statements, Commands, and Functions Boxed As each new statement, com-
mand, or function is introduced, it is enclosed in a box with its complete format. It is
also explained and illustrated with examples, which clearly demonstrate its use. These
boxes serve as a source of easy reference for the student.

Coverage of Output Report Design A rare topic for BASIC programming textbooks
is planning reports. The use of printer spacing charts is covered, along with multiple
page output.

Flexibility of Use This text is ideally suited for the variety of programming courses
currently being taught (and those being considered). That “one semester course in
BASIC” is far from standardized, and many colleges and universities are beginning
to offer a second semester of BASIC programming. In many cases, BASIC is intro-
duced in a computer concepts course, and in others, the programming is in an inde-
pendent course.

The coverage of this text is actually more comprehensive than that of most one-
semester courses. This gives the professor some latitude in the selection of topics. Here
are some possible variations, using parts of the material presented.

1. Short course for students with no background.
Spend two or three hours on chapter 1 to give the student an
understanding of the hardware and software concepts. Leave out the material
on data files and sorting. The course would terminate with chapter 11.
2. Concept courses which include BASIC.
Skip chapter 1 (which covers the fundamentals being more completely
covered). Use chapters 2, 3, 4, 5, 8, FOR/NEXT from 9, and 10.
3. One semester (or quarter) course that has a prerequisite.
Skip chapter 1.
4. File oriented course.
Cover chapter 13 (random files) early. Some successful courses cover this

material before chapter 4, which allows programs to have data file input even
before the introduction of selection (IF-THEN).

Preface xi

Acknowledgments

xii

Advanced course.

The concepts in chapter 7 (interactive programming, screen formatting,
data validation) are commonly taught in a second BASIC course. Also,
sequential updates and indexing random files (chapter 14) are topics often
found in second semester programming courses. Some of the materials in the
appendices make ideal lessons for an advanced course. Error trapping and
CHAIN and COMMON statements (appendix 1) are generally considered
advanced topics, as well as controlling printer functions (appendix H).
Mathematically oriented course.

Cover chapter 9 after chapter 2. Chapter 9 includes the FOR-NEXT
statements, functions, and the DEF FN statement.

Supplementary Materials This text is part of a complete package of course materials.

l.

Instructor’s manual. Includes chapter outlines, teaching suggestions, test
questions, and exercise solutions.

Instructor’s diskette. Includes a working solution to many programming
exercises.

Testpak. Computerized version of the test questions contained in the
Instructor’s Manual.

I would like to express my appreciation to the many people who have contributed to
the successful completion of this text. Most especially, I want to thank my colleagues
and the students of Mt. San Antonio College who helped class test the material in the
text and greatly influenced the final form of the manuscript. I am also grateful to the
reviewers who gave constructive criticism and many valuable suggestions.

Bryan J. Carney—University of Wisconsin, Eau Claire

Maurice Eggen—Trinity University

Norman Lindquist—Western Washington University

Lewis D. Miller—Canada College

Lawrence J. Molloy—Oakland Community College

Donald L. Muench—St. John Fisher College

Pasha A. Rostov—California Polytechnic State University at San Luis Obispo
R. Waldo Roth—Taylor University

Sherman Sherrick—William Jewell College

Charles Williams—Georgia State University

Preface

Summary of BASIC Statements

Statement Effect Text
Page
#
MIDS$(stringvariable, start position, number of Replaces part of a string variable with the 169
characters) = stringexpression string expression.

NAME “old filename” AS “new filename” Renames a diskette file 321

NEXT [loop index] Terminates a FOR...NEXT loop. 217

ON ERROR GOTO line number Enables program error trapping and specifies 423
the line number of the error handling routine.

ON numeric expression GOSUB list of line Evaluates the numeric expression and begins 196

numbers execution of the subroutine specified.
ON numeric expression GOTO list of line Evaluates the numeric expression and branches 436
numbers to the corresponding line number.

OPEN mode, #filenum, “filename” Opens a sequential data file. Mode must be “I” 310
for input files or “O” for output files.

OPEN “filename” FOR mode AS #filenum Alternate format. Opens a sequential data file. 310
Mode must be INPUT, OUTPUT, or
APPEND.

OPEN “R”, #filenum, “filename”, reclength Opens a random data file. 327

OPEN “filename” AS #filenum, LEN = Alternate format. Opens a random data file. 327

reclength

OPTION BASE number Sets the minimum value for array subscripts. 250
Must be 0 or 1.

PRINT items to print Displays data on the screen. Items to print may 22
be separated by semicolons or commas (with
different results).

PRINT USING “string literal”; items to print Displays data on the screen, according to the 76

PRINT USING stringvariable; items to print - -

”

format specified in the string literal or variable.

KE A4 2 7 g M1C Fo So1't BABIC

Summary of BASIC Statements

Statement Effect Text
Page
#
GOSUB linenumber Begins execution of a subroutine. The 45
RETURN statement returns from the
subroutine.
GOTO linenumber Branches to the specified line number. 417
HOME Apple MBASIC. Clears the screen. 160
HTAB position Apple MBASIC. Moves the cursor to 162
horizontal column position on the line.
IF condition THEN statement(s) [ELSE Performs the statement(s) following THEN 94
statement(s)] when the condition evaluates true. Performs the
statements following the ELSE (if included)
when the condition evaluates false.
INPUT [“prompt™;] variable [,variable2,...] Inputs data from the keyboard. If a prompt is 41
included, it prints before the input occurs.
INPUT #filenum, variable [,variable2,...] Reads data from a sequential data file. 314
KILL “filename” Deletes a file from diskette. 321
LET variable = expression Evaluates the expression and assigns the result 33
to the variable.
LOCATE row, column [,cursor] Places the cursor at the row and column 160
position specified. The optional cursor
parameter controls the visibility of the cursor.
LPRINT items to print Prints data on the printer. Items are separated 22
by commas or semicolons.
LPRINT USING “stringliteral”; items to print Prints data on the printer, according to the 76
LPRINT USING stringvariable; items to print format specified in the string literal or variable.
LSET stringvariable = stringexpression Left-justifies the string expression in the string 330

variable.

Contents

Preface ix

1 Introduction to Computers and
BASIC 1

The Computer 2
Hardware and Software 2
Hardware 3
Processor 3
Main Storage 3
Secondary or Auxiliary Storage 4
Read Only Memory (ROM) 5
Computer Input 5
Computer Output 6
Software 6
The Operating System 7
Operating System Utilities 8
Compilers, Interpreters, and Programming
Languages 8
A First BASIC Program 10
Program Planning 12
Steps in Program Development 12
Program Planning with Flowcharts, Pseudocode, and
Hierarchy Charts 13
Flowcharts 13
Pseudocode 14
Hierarchy Charts 16
Developing an Example Program 16
Making the Computer Perform 17
Running a Program 17
Program Errors 17
Sample Syntax Errors 17
Sample Logic Errors 18
Correcting the Errors 18
Format of BASIC Statements and Commands 19
Saving and Reloading a Program 19
Sample Filenames for Programs 20
Viewing the Files Stored on a Diskette 20
Changing or Removing a Program File on the
Diskette 21
——BASIC Statements and Commands 22
BASIC Commands Covered in this Chapter 22
BASIC Commands vs. Operating System
Commands 22
Formatting Program Output with the PRINT
Statement 22
Vertical Spacing 23
Horizontal Spacing—Semicolons and Commas 23
Using Print Zones for Spacing 24

Modular Programs with Calculations
and Strings 31

- Numeric Variables 32

Variable Names 32
Numeric Constants 33
LET Statements 33
Arithmetic Expressions 34
Arithmetic Operators 34
Rounding and Functions 35
String Variables 36
String Literals 37
INPUT Statements 38
Prompting INPUT 38
Combining Literals with INPUT Statements 40
String Delimiters 43
Modular Programming 44
Subroutines 45
Forming Modular Programs—The Program
Mainline 46
Modular Program Planning 47
Pseudocode 47
Flowcharts 48
Hierarchy Charts 48

Programs with Loops and Formatted
Qutput 57

Loops 58

Conditions 58
Comparing Numeric Variables and Constants 59
Comparing Strings 59
Compound Conditions 61

Loop Indentation 65

Endless Loops 65

Terminating Loops 65
Asking a Question to Terminate the Loop 65
Terminating Loops with a Particular Data
Value 66
Counter-Controlled Loops 68

Nested Loops 68

Accumulating Sums 70
Averaging 72

Planning Programs with Loops 73
Flowcharting Loops 74

Output Formatting 74

The PRINT Functions—TAB and SPC 74
TAB 74
SPC 76

Formatting Output with PRINT USING and
LPRINT USING 76

Editing Numeric Data 77

Editing Strings 77

Rounding 78

Defining Entire Print Lines Including Literals

Formatting PRINT Images 78

Short Numeric Formats 78

Placement of PRINT Images in the Program 79

Extended Numeric Editing 80

Editing String Data 82

Repeated PRINT Images 83

Combining TABs and PRINT Images 83

4 Adding IF Statements and READ

Statements to Programs 93

The Selection Process 94
IF-THEN-ELSE 94
Effect of the IF-THEN-ELSE Statement 95
Conditions for IF Statements 95
Indentation 95
Multiple Statements for THEN or ELSE 98

Finding the Highest or Lowest Value in a List 102

Nested IF Statements 103
More on System Differences 104
Notes on Decision Making and Structured
Programming 104
Planning Program Decisions 105
Flowcharts 105
Pseudocode 105
Hierarchy Charts 105
The READ and DATA Statements 106
Rules for READ and DATA Statements 108
Placement of READ and DATA Statements 109
Comparison of READ/DATA, INPUT, and LET
Statements 109
Using READ/DATA ina Loop 109
Priming READ 110
Data Terminators 110
The RESTORE Statement 111

5 Structured Programming 125

Vi

Top-Down Programming 126
Top-Down Testing 126
Module Stubbing 126
Structured Programming 128
Structured Coding Guidelines 129
Flow of Control 129
Three “Proper” Constructs for Structured
Programs 129
Structured Module Design Considerations 130
One Entry, One Exit 130
The “Black Box™ Concept 130
Module Cohesion 130
Module Coupling 131
Using Switches and Flags 131

Report Design and Subtotals 135

Planning Output with Printer Spacing Charts 136
Multiple Page Output 138

Coding the Heading Module 139
Subtotals with Control Breaks 144

The Page Headings 146

Contents

Data Validation and Interactive
Programs 157

User Friendly? 158
Guidelines for Interactive Programs 158
Validity Checking 158
Output Formatting 160
Clearing the Screen 160
Precise Cursor Placement 160
Cursor Placement for the Apple 162
String Manipulation to Assist Screen Formatting 163
Joining Strings—Concatenation 163
String Manipulation Functions 163
SPACES 163
STRINGS 163
Formatting a Screen for Data Entry 164
More String Manipulation 167
LEN 167
LEFT$ 168
RIGHTS 168
MID$ 168
MIDS$ Statement 169
VAL 169
STR$ 170
Numeric Validity Checking 171
More Handy String Functions 171
INSTR 171
CHRS$ 172
ASC 173
Free-Form Keyboard Entry 174
Inputting Strings of Data with the INPUT$
Function 175
More on Numeric Validity Checking 175
Inputting Strings with the LINE INPUT
Statement 176
Retrieving the Date and Time 176
Check Digit Calculation 178

Menus 193

Menu Based Programs 194
ON..GOSUB 196
Writing a Menu Program 197
Another Approach to Menus—The INSTR
Function 198

Additional Control Structures and
Numeric Functions 215

FOR/NEXT Loops 216
Using Variables to Control Loop Execution 218
Negative Increment, or Counting Backward 218
Condition Satisfied before Entry 219
Indentation 219
Flowcharting FOR/NEXT Loops 219
Notes on Loops and Structured Programming 222
Altering the Values of the Control Variables 222
Nesting FOR/NEXT Loops 223

Numeric Position 228
Binary Fractions and Accuracy 229

What to Do? 230
Numeric Functions 231

Random Numbers—RND and RANDOMIZE 231

Converting to Integers—INT, FIX, and CINT
Functions 234

Arithmetic Functions—ABS, SGN, SQR 234
Exponential and Trigonometric Functions 235

User-Defined Functions 236
Functions with No Arguments 238
Functions with Multiple Arguments 238
Referencing User-Defined Functions 239
Order of Execution 239
Hierarchy of Operations 239

10 Single-Dimension Arrays 245

11

12

Introduction 246
Programming with Arrays 246
Subscripts 247
Dimensioning Arrays 249
More on Subscripts 250
Filling and Array with READ and DATA
Statements 250
Parallel Arrays 251
Arrays Used for Accumulators 252
Initializing the Array 252
Adding to the Correct Total 252
Direct Table Reference 253
Lookup by Direct Reference 254
Table Lookup—Serial Search 254
Coding a Table Lookup 256
Table Lookup with String Data 260
Binary Search 264
Diagram of a Binary Search 264
Coding of Binary Search 266

Advanced Array Handling 271

Two-Dimensional Arrays 272
Initializing Two-Dimensional Arrays 272
Printing a Two-Dimensional Table 273
Summing a Two-Dimensional Table 273
Lookup Operation for Two-Dimensional Tables 274
Multidimensional Arrays 277
Sorting 284
The Bubble Sort 284
Sort Example 284
Coding for Bubble Sort 285
What Happens in the Bubble Sort 285
The Shell Sort 288
Pseudocode for the Shell Sort 289
Multiple Fields to Be Sorted 292

Sequential Data Files 303

Introduction 304

Diskette Storage 304
Data Files and Program Files 305
File Organizations 306

Sequential File Organization 307
Writing Data to a Disk File 308
Looking at the Data File on Diskette 312
Writing a Program to List the Data File 313

Opening a File for Input 314

 Finding the End of the Data File 315
Storing Printed Reports 317

Making Changes to the Data in Sequential Files 318

Adding Data to Sequential Files 319
APPEND Mode 319
Adding Data to the End of the File with No
APPEND Available 319

13 Random Data Files 325

Introduction 326
Random Files 326

Creating a Random File 327

Opening a Random File 327

Fixed Record Size 328
Fixed Field Size 328
Selecting and Defining Field Size and Record
Length 328

Using the File Buffer for Input and Output 329
Using the Record Buffer for Numeric Data 331
Conversion of Numeric Values to Compressed
Strings 331

Reading and Writing the Random Data File 331

Printing Selected Records from a File 333

Printing Out an Entire File 335
Finding the End of a Random Data File 335
The Unused Record Positions 336

More on Numeric Fields in Random Files 348

Relative Size of Random Files vs. Sequential

Files 349

14 Additional File Handling

Concepts 355

Updating Sequential Files 356
Adding a Record 357
Deleting a Record 358
Changing a Record 359
Indexing Files 364
The Random File 364
The Index File 364
Two Files 365
Using the Index to Access the File 366
Establishing the Index File 368

Appendixes 379

Appendix A—Summary of Commands for BASIC,
CP/M, MS-DOS, and PC-DOS 381

Appendix B—Editing Program Lines 387

Appendix C—The ASCII Code 395

Appendix D—Testing and Debugging Techniques 397
Appendix E—Answers to Chapter Feedback 401
Appendix F—Summary of Reserved Words in

BASIC 415

Appendix G—Simulating IF-THEN-ELSE and
WHILE/WEND for Other BASIC Versions 417
Appendix H—Using Special Functions of Printers 419
Appendix I—Error Trapping, CHAIN and
COMMON 423

Appendix J—Summary of BASIC Statements and
Functions 435

Glossary 441
Index 445

Contents vii

Introduction to Computers
and BASIC

RUN Command (
LIST and LLIST Commands

SAVE Command
LOAD Command
FILES Command
KILL Command

AUTO Command 1. Describe the computer and its

RENUM Command functions.

PRINT and LPRINT V 2. Explain the difference between

Statements hardware and software.

3. Differentiate between application
software and operating system
software.

4. Understand the functions performed
by interpreters and compilers.

S. Become familiar with the steps in
program design and development.

6. Draw flowcharts using standard
flowcharting symbols.

7. Learn to code, enter, and test an
elementary BASIC program.

Upon completion of this chapter, you
should be able to:

The Computer

Hardware and
Software

The computer, like a typewriter or calculator, is a tool for solving problems. Once mas-
tered, it can be made to perform marvelous feats on command. Without mastery, it
can be like a typewriter or calculator in the hands of a child who has not learned its
use—its great potential goes to waste.

Many things must operate together for a computer to do any useful work. As-
sume you have just purchased a powerful, flexible, accurate, obedient robot. You want
the robot to work for you—perhaps scrub the floor, fix the car, wash the dishes, or do
math homework.

This robot will do anything you ask, but it doesn’t know how to do anything for
itself. It has no common sense. If you tell the robot to change the spark plugs in the
car, it won’t know that first it must open the hood. If you remember to tell it to open
the hood, you had better be sure to place the steps in the correct sequence. Otherwise,
it will attempt to change the spark plugs and then open the hood. (At this point, hope
that the robot is not strong enough to carry out the task, gets stuck, and sends a mes-
sage saying, “Not able to carry out the task.”)

In many ways a computer is similar to that obedient, dumb robot. It must be
told each step to carry out. Additionally, each step must be carried out in the correct
sequence. The computer is not smart enough to know when steps are out of sequence,
so it simply follows directions as long as it possibly can. Sometimes the results will not
be what are expected, but you can be sure that the computer followed directions ex-
actly.

Did you instruct the robot to remove the spark plugs with a wrench? Did you
tell it to check the gap? Exactly how do you think it will replace the old plugs with
the new plugs? If it hasn’t been told these things, it will either stop or do something
strange and unexpected. In either case, the results can be frustrating.

When writing instructions for the computer to solve a problem, you must be cer-
tain to compute the result before printing it. Since the computer doesn’t know the
difference, it will do only and exactly what you ask. Depending on your frame of mind,
sometimes the results of computer processing can be uproariously funny or infuriating.
Frankly, some people get so frustrated with the level of detail required that the pro-
gramming would be better left to someone else.

In our robot story, you could say that you had a powerful robot (the hardware), but
without the proper instructions (the software), the robot would not be much help. The
same is true for the computer. The computer itself—the circuitry, the case, the key-
board, the screen—are called the hardware. While the computer has tremendous power
and flexibility, it absolutely must have instructions in order to carry out any useful
work. Those instructions are the software, or the computer programs. Computer pro-
grams can be thought of as the instructions necessary to convert inputs into outputs.

process output

The entire purpose of computer processing is to produce some type of output (e.g.,
a report, a computation, a sorted list, a graph). Output may be generated on a screen,
a printer, a plotter, a speaker, or some other output device. In order to produce output,
there must be processing of the input data. The input to the program may come from
the keyboard, from magnetic disk or tape, from a microphone, or from some type of
reader such as a bar code reader or card reader. The processing may be arithmetic
computations or rearranging, reorganizing, or reformatting data.

The primary goal of this text is to present a method of writing computer soft-
ware—turning inputs into useful outputs. A basic knowledge of computer hardware is
helpful when writing computer instructions.

Microsoft® BASIC Using Modular Structure

Hardware

Note the block diagram of a computer. The computer can be seen as a group of com-
ponents working together. The following sections explain the various components.

Processor

- secondary ‘
storage

Processor

The main unit of the computer is often called the processor. In the block diagram, the
two primary components of the processor are the CPU (Central Processing Unit) and
the main storage of the computer.

The CPU, sometimes called the “brain” of the computer, does the actual ma-
nipulation of the data. One part of the CPU, called the ALU (Arithmetic and Logic
Unit), does all computations and logical operations. Logical operations include such
things as determining that one number is greater than another, that one name follows
another, or that a condition is true or false.

Another part of the CPU is the control unit. It is the control unit that controls
and coordinates the execution of instructions. The control unit and the ALU working
together carry out the instructions of the computer program.

Main Storage

The main storage of the computer can have many different names. The words storage
and memory are used interchangeably when referring to the computer. Main storage
may be called primary storage, internal storage, temporary storage, or RAM (Random
Access Memory).

When a computer is executing a program, main storage must hold the entire
program as well as some of the data being operated upon. For this reason, the size of
main storage is important. In order to hold a large program, a computer must have a
sufficient amount of memory.

Computers are sold with varying amounts of main storage, and often additional
memory may be added. Memory size is generally stated in terms of the number of
characters that can be stored, where one character equals one letter of the alphabet,
one digit of a number, or one of the special symbols such as $, %, *.

In computer terms, the amount of storage needed to hold one character is called
a byte. A group of 1024 bytes is referred to as one K (Kilobyte). As a rough guide to
computer storage, remember that 1 K holds about one thousand characters, which would
be approximately two-thirds of a double-spaced, typewritten page of data.

Typical main storage sizes:

48K bytes—approximately 48,000 characters
64K bytes—approximately 64,000 characters
128K bytes—approximately 128,000 characters
256K bytes—approximately 256,000 characters
512K bytes—approximately 512,000 characters
1M—one megabyte—approximately 1 million characters

Introduction to Computers and BASIC 3

A personal computer.

S

=l

Since the entire program and its data must fit into main storage, the computer’s
memory may be a limiting factor when developing computer programs.

Volatility

As a general rule, you don’t need to know how a computer works in order to use one,
just as you don’t need to understand all of the systems of a car in order to drive. But
there are a few pieces of information that will make life easier for you.

One helpful fact to know is that most computer memory is volatile; that is, when
the power source is removed, the contents of the storage are lost. Any program or data
stored in the computer’s main storage is gone when the computer is turned off or a
power failure occurs. This phenomenon has been the source of many curses and tears
by computer users.

Secondary or Auxiliary Storage

Fortunately, there is storage that is nonvolatile—that does not lose its memory when
the power goes off. This is the type of memory used for long-term storage of data files
and programs—the media used to store programs when they are not being executed.
This is called secondary storage, auxiliary storage, external storage (or memory), or
sometimes long-term storage.

The two most common forms of secondary storage are magnetic disk and mag-
netic tape. Within these two groups, the types are further broken down into small disks,
large disks, hard-surface disks, floppy disks, and cassette tapes and reel-to-reel tapes
of various sizes and shapes. As a BASIC programmer for a personal computer, the
storage media you will most likely see is the floppy disk, or diskette, which comes in
several different sizes. Each computer manufacturer uses a little different method for
placing data on a disk. The diskette must be formatted for the computer being used.
So, with some exceptions, the general rule is that diskettes for one computer will not
be usable on a computer of another manufacturer.

Since it is likely that you will be handling diskettes for storage of programs and
data, a few words about the care of disks are in order.

Microsoft® BASIC Using Modular Structure

A floppy disk, or diskette.

Datallife

2S/2D-MD 550-01 i ‘

Doutrle-Sided/ Double-Density
Soft-Sectored/With Hub Ring

disk no \éfbatimx

© 1984 Verbatim Corp.

1. The data is stored magnetically, similar to audio tapes. A magnetic field
(magnet, power supply, etc.) can erase or scramble your data.

2. Anything on the surface of the disk can ruin the data, and maybe even the

read/write heads in the disk drive. This means no fingerprints, hairs,

lemonade, or cookie crumbs.

Heat ruins disks. Leaving a diskette in a hot car is a sure way to destroy it.

4. Pressure can damage a disk. Never allow a disk to be caught by the ring of a
binder. Never use a ballpoint pen to write on the disk label.

w

Read Only Memory (ROM)

There is another type of nonvolatile memory available for computers. This storage
resembles main storage with one important difference—the contents of the memory
cannot be changed by the computer user. This ROM (Read Only Memory) is filled
with software by the manufacturer. Once inside the computer, the instructions may be
executed, but not changed. ROM is actually hardware containing permanently stored
software and is sometimes called firmware.

Computer Input

As you have discovered, main storage must hold the program and some of the data to
operate upon. How do these things get into storage? Since all data must be stored
electronically, letters, numbers, words, or sounds must first be converted to a form that
can be stored. Then these data can be moved into main storage. This conversion to
electronic form, sometimes called digitizing, takes place in computer input devices.

The foremost input device is the keyboard. What happens when you press the 4
key on the keyboard? That keypress must be converted into digital electronic pulses
that can be stored in computer memory.

Many other input devices are available for personal computers as well as their
larger counterparts. Increasingly popular as input devices for personal computers are

Introduction to Computers and BASIC {51

