
London Mathematical Society Lecture Note Series 378

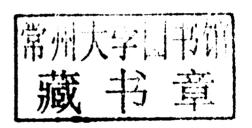
Probability and Mathematical Genetics

Papers in Honour of Sir John Kingman

Edited by

N. H. Bingham and C. M. Goldie

Pro Mathematical Genetics


Edited by

N. H. BINGHAM

Imperial College London

C. M. GOLDIE

University of Sussex

es series: 378

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

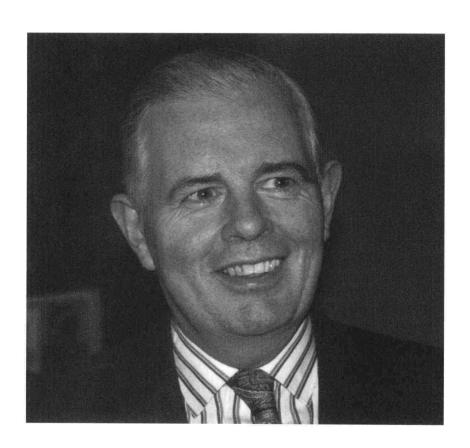
Published in the United States of America by Cambridge University Press, New York

 $www.cambridge.org\\ Information on this title: www.cambridge.org/9780521145770$

© Cambridge University Press 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2010


Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-14577-0 Paperback

Additional resources for this publication at www.prob.org.uk

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contributors

David J. Aldous University of California at Berkeley Graeme K. Ambler University of Cambridge Andrew D. Barbour University of Zürich John D. Biggins University of Sheffield Nicholas H. Bingham Imperial College London Rosie Cornish University of Bristol Darvl J. Dalev Australian National University and University of MelbourneAurore Delaigle University of Melbourne and University of Bristol Peter Donnelly University of Oxford Warren J. Ewens University of Pennsylvania Alexander V. Gnedin University of Utrecht Charles M. Goldie University of Sussex Peter J. Green University of Bristol David R. Grev University of Sheffield Robert C. Griffiths University of Oxford Geoffrey Grimmett University of Cambridge Peter G. Hall University of Melbourne and University of California at DavisChris Haulk University of California at Berkeley Peter H. Havnes University of Cambridge Viet Ha Hoang Nanyang Techological University, Singapore Frank P. Kelly University of Cambridge Wilfrid S. Kendall University of Warwick

University of Oxford

University of Cambridge

University of California at Berkeley

Loughborough University

University of Bristol

London School of Economics

Sir John [J. F. C.] Kingman

Stephen Leslie

Jim Pitman

James R. Norris

Adam J. Ostaszewski

Carol L. Robinson

Vadim Shcherbakov Moscow State University Bernard W. Silverman University of Oxford University of Warwick Dario Spanó Simon Tavaré University of Cambridge University of Bristol Stanislav Volkov Monash University Geoffrey A. Watterson University of Cambridge Peter Whittle Swansea University David Williams University of California at San Diego Ruth J. Williams Konstantinos C. Zygalakis University of Oxford

Preface

John Frank Charles Kingman was born on 28th August 1939, a few days before the outbreak of World War II. This Festschrift is in honour of his seventieth birthday.

John Kingman was born in Beckenham, Kent, the son of the scientist Dr F. E. T. Kingman FRSC and the grandson of a coalminer. He was brought up in north London, where he attended Christ's College, Finchley. He was an undergraduate at Cambridge, where at age 19 at the end of his second year he took a First in Part II of the Mathematical Tripos, following it with a Distinction in the graduate-level Part III a year later, for his degree. He began postgraduate work as a research student under Peter Whittle, but transferred to David Kendall in Oxford when Peter left for Manchester in 1961, returning to Cambridge when Kendall became the first Professor of Mathematical Statistics there in 1962.

John's early work was on queueing theory, a subject he had worked on with Whittle, but was also an interest of Kendall's. His lifelong interest in mathematical genetics also dates back to this time (1961). His next major interest was in Markov chains, and in a related matter—what happens to Feller's theory of recurrent events in continuous time. His first work here dates from 1962, and led to his landmark 1964 paper on regenerative phenomena, where we meet (Kingman) p-functions. This line of work led on to his celebrated characterisation of those p-functions that are diagonal Markov transition probabilities (1971), and to his book, Regenerative Phenomena (1972). Meanwhile, he had produced his work on queues in heavy traffic (1965). His work on subadditivity began in 1968, and led to the Kingman subadditive ergodic theorem of 1973. His genetic interests led to his book Mathematics of Genetic Diversity of 1980, and his famous paper on the (Kingman) coalescent of 1982. Later work includes his book Poisson Processes of 1993. Other interests include

xvi Preface

Spitzer's identity and its connection with queues, the subject of his *The Algebra of Queues* of 1966.

John began his academic career in Cambridge, as Assistant Lecturer (1962-64) and Lecturer (1964-65), with a fellowship at his undergraduate college, Pembroke (1961-65). He left for a Readership at the University of Sussex, where he was promoted to Professor at the very early age of 26 in 1966, the year in which he published his first book, *Introduction to Measure and Probability*, with S. James Taylor. He left Sussex to be Professor at Oxford from 1969-85. He was elected a Fellow of the Royal Society in 1971 at age 31. He was made a Foreign Associate of the US National Academy of Sciences in 2007.

We all know very good mathematicians who could not run a corner sweetshop, let alone a mathematics department, still less a university. On the other hand, mathematicians who are not very bad at administration are often very good at it. John Kingman is a shining example of the latter category. This led to his secondment, while at Oxford, to chair the Science Board of the Science Research Council (1979–81), and later to serve as Chairman of the Science and Engineering Research Council (1981–85), for which he was knighted in 1985. It led also to John's career change in 1985, when he became Vice-Chancellor of the University of Bristol, serving a remarkable sixteen years until 2001. He then served for 5 years as Director of the Isaac Newton Institute for Mathematical Sciences in Cambridge. In 2000 he became the first chairman of the Statistics Commission, overseeing the Office of National Statistics.

John Kingman is the only person who has been President of both the Royal Statistical Society (1987–89) and the London Mathematical Society (1990–92). He has also served as President of the European Mathematical Society (2003–06). He received the LMS Berwick Prize in 1967, the RSS Guy Medal in silver in 1981, and the RS Royal Medal in 1983 (for his work on queueing theory, regenerative phenomena and mathematical genetics). He holds a number of honorary doctorates. He does not hold a PhD, being Mr Kingman until he was made Professor Kingman at Sussex, later taking a Cambridge ScD.

John Kingman's mathematical work is remarkable for both its breadth and its depth. But what shines out from everything he does, whether his written papers and books or his lectures and seminars, is *lucidity*. Kingman is always clear, and lucid. This even extends to his handwriting—small, neat and beautifully legible. The Wiley typesetters who set his 1972 book worked from his handwritten manuscript, which they said was easier to work from than most authors' typescripts. During his Oxford

Preface xvii

years, the secretaries there revered him: they were not used to Chairmen of the Mathematical Institute whose desks were tidy, who handled paperwork promptly, and who would give a decision in real time, rather than procrastinate.

John Kingman has been blessed since his marriage in 1964 in the love and support of his distinguished wife Valerie Cromwell; they have a son and a daughter, who are now acquiring distinction themselves. They now live in retirement in Bristol and London.

While probabilists may regret the loss to probability theory of John's years in administration rather than mathematics, this is offset by the continuing impact of his most important work, whether in queueing theory and heavy traffic, Markov chains and regenerative phenomena (the subject of some of his most recent papers, where he has successfully solved some problems that had remained open since his own work of thirty years ago), subadditive ergodic theory or mathematical genetics and the coalescent. Indeed, the intense concentration of effort on the genetics side associated with the Human Genome Project has thrown in to ever higher relief the fundamental importance of Kingman's work in this area. The editors and contributors to this volume take pleasure in dedicating this book to him, on the occasion of his seventieth birthday.

N. H. Bingham and C. M. Goldie, December 2009.

Acknowledgements All contributions to this collection have been referred. The editors are most grateful to the referreds for their efforts, particularly in those cases where a fast response had to be requested.

The Bibliography of J. F. C. Kingman (pp. 1–16) was compiled and arranged by Charles Goldie and Jim Pitman. The editors are grateful to Jim for his collaboration, and also thank John Kingman for providing details of his publications that made the task much easier.

The photograph for the Frontispiece is reproduced by courtesy of the Isaac Newton Institute for Mathematical Sciences, Cambridge.

Contents

	ist of contributors page x	iii
	reface	ΧV
	Fibliography of J. F. C. Kingman	1
1	fragment of autobiography, 1957–1967	
		17
2	More uses of exchangeability: representations of com-	
	lex random structures	
	David J. Aldous	35
	1 Introduction	35
	2 Exchangeability	36
	3 Using exchangeability to describe complex structures	43
	4 Construction of, and convergence to, infinite	
	random combinatorial objects	49
	5 Limits of finite deterministic structures	56
	6 Miscellaneous comments	59
3	Perfect simulation using dominated coupling from the	
	past with application to area-interaction point pro-	
	esses and wavelet thresholding	
	G. K. Ambler and B. W. Silverman	64
	1 Introduction	65
	2 Perfect simulation	66
	3 Area-interaction processes	71
	4 Nonparametric regression by wavelet thresholding	77
	5 Perfect simulation for wavelet curve estimation	82
	6 Conclusion	88
4	Assessing molecular variability in cancer genomes	
	A. D. Barbour and S. Tavaré	91

	1	Introduction	9:
	2	Colorectal cancer data	93
	3	The Ewens sampling formula	9
	4	Analysis of the cancer data	98
	5	Poisson approximation	100
	6	Conclusion	110
5	Branch	ing out	
	J. D. I	Biggins	11:
	1	Introduction	113
	2	The basic model	115
	3	Spreading out: old results	116
	4	Spreading out: first refinements	119
	5	Spreading out: recent refinements	120
	6	Deterministic theory	122
	7	The multitype case	124
	8	Anomalous spreading	125
	9	Discussion of anomalous spreading	130
6	Kingma	an, category and combinatorics	
	N. H.	$Bingham\ and\ A.\ J.\ Ostaszewski$	135
	1	Introduction	135
	2	Preliminaries	138
	3	A bitopological Kingman theorem	143
	4	Applications—rational skeletons	151
	5	KBD in van der Waerden style	157
	6	Applications: additive combinatorics	162
7	Long-ra	ange dependence in a Cox process directed by	
	an alter	rnating renewal process	
	D. J. I	Daley	169
	0	Preamble	170
	1	Introduction	170
	2	Stationary renewal and alternating renewal processes	172
	3	Second moments	178
	4	An alternating renewal process not satisfying	
		Condition A	180
	5	Postlude	181
8		methods and minimum contrast estimators for	
	empirio	al deconvolution	
	Aurore	Delaigle and Peter Hall	185
	1	Introduction	186

		Contents	ix
	2	Methodology and theory	191
	3	Relationship to minimum contrast methods	195
9	The co	alescent and its descendants	
	Peter 1	Donnelly and Stephen Leslie	204
	1	Introduction	205
	2	The coalescent and the Fleming-Viot process	206
	3	Inference under the coalescent	213
	4	The Li and Stephens model	215
	5	Application: modelling population structure	221
10	Kingm	an and mathematical population genetics	
	Warren	n J. Ewens and Geoffrey A. Watterson	238
	1	Introduction	238
	2	Background	239
	3	Putting it together	244
	4	Robustness	247
	5	A convergence result	248
	6	Partition structures	249
	7	'Age' properties and the GEM distribution	251
	8	The coalescent	256
	9	Other matters	260
11		eterizations of exchangeable partitions and ran-	
		screte distributions by deletion properties	
		der Gnedin, Chris Haulk and Jim Pitman	264
	1	Introduction	265
	2	Partition structures	266
	3	Partially exchangeable partitions	274
	4	Exchangeable partitions	278
	5	The deletion property without the regularity	005
		condition	285
	6	Regeneration and τ -deletion	286
12		ng coupon-collecting theory to computer-aided	
	assessn		200
		Goldie, R. Cornish and C. L. Robinson	299
	1	Introduction	299
	2	Coupon collecting	300
	3	How many tests?	302
	4	Asymptotics	303
	5	Proofs for §4	305
	6	Numerical results	314

x Contents

	7	Discussion	315
13	Colour	ing and breaking sticks: random distributions	
10		terogeneous clustering	
		$I.\ Green$	319
	1	Introduction	319
	2	Mixture models and the Dirichlet process	320
	3	Applications and generalisations	325
	4	Pólya urn schemes and MCMC samplers	329
	5	A coloured Dirichlet process	333
14		sociated random walk and martingales in ran-	
	dom w	alks with stationary increments	
	D. R.	Grey	345
	1	Introduction and definition	345
	2	Three examples	349
	3	Some remarks on duality and asymptotic inde-	055
		pendence	355
15	Diffusi	on processes and coalescent trees	
	$R. \ C.$	Griffiths and D. Spanó	358
	1	Introduction	359
	2	A coalescent dual process	361
	3	Processes with beta stationary distributions and	
		Jacobi polynomial eigenfunctions	368
	4	Subordinated Jacobi diffusion processes	371
	5	Subordinated coalescent process	375
16	Three	problems for the clairvoyant demon	
	Geoffr	rey Grimmett	380
	1	Introduction	380
	2	Site percolation	381
	3	Clairvoyant scheduling	383
	4	Clairvoyant compatibility	384
	5	Clairvoyant embedding	385
	6	Dependent percolation	390
	7	Percolation of words	393
17	7 Homo	genization for advection-diffusion in a perforated	
	domai		
		Haynes, V. H. Hoang, J. R. Norris and K. C.	
	Zygalo		397
	1	Introduction	398

Contents	X1

	2	Review of homogenization for diffusion with	
	_	periodic drift	400
	3	Existence of a volume growth rate for a diffusion	
	0	sausage with periodic drift	402
	4	Estimates for the diffusion sausage	403
	5	Asymptotics of the growth rate for small and large	
		cross-sections	405
	6	Homogenization of the advection-diffusion equa-	
		tion in a perforated domain	408
	7	The case of diffusivity $\varepsilon^2 I$	410
	8	Monte Carlo computation of the asymptotic	
		growth rate	411
18	Heavy	traffic on a controlled motorway	
		Kelly and R. J. Williams	416
	1	Introduction	416
	2	A single queue	418
	3	A model of Internet congestion	422
	4	A Brownian network model	426
	5	A model of a controlled motorway	430
	6	Route choices	438
	7	Concluding remarks	442
19	Coupli	ng time distribution asymptotics for some coup-	
	-	f the Lévy stochastic area	
		Kendall	446
	1	Different kinds of couplings	448
	2	Reflection coupling	450
	3	Coupling more than one feature of the process	451
	4	Conclusion	461
20	Queue	ing with neighbours	
	V. She	cherbakov and S. Volkov	464
	1	Introduction	464
	2	Results	467
	3	Asymmetric interaction	470
	4	Symmetric interaction	475
	5	Appendix	480
21	Optim	al information feed	
	P. Wh		483
	1	Interrogation, transmission and coding	483
	2	A tractable infinite-horizon case	486

xii Contents

22	A dyn	amical-system picture of a simple branching-	
	proces	s phase transition	
	David	Williams	491
	1	Introduction	491
	2	Wiener-Hopferization	493
	3	How does ODE theory see the phase transition?	496
	4	Proof of Theorem 1.1 and more	499
	Index		509

Bibliography of J. F. C. Kingman

Compiled by Charles M. Goldie and Jim Pitman^a

- 1 Books authored
- 2 Books edited
- 3 Mathematical articles
- 4 Abstracts
- 5 Book reviews authored
- 6 Discussion contributions
- 7 Other contributions
- 8 Interviews and biographies

1 Books authored

- [B1] Kingman, J. F. C., and Taylor, S. J. 1966. Introduction to Measure and Probability. Cambridge: Cambridge University Press.
- [B2] Kingman, J. F. C. 1966. On the Algebra of Queues. Methuen's Supplementary Review Series in Applied Probability, vol. 6. London: Methuen & Co. Ltd. Reprint of [M36].
- [B3] Kingman, J. F. C. 1972. Regenerative Phenomena. Wiley Series in Probability and Mathematical Statistics. London: John Wiley & Sons.
- [B4] Kingman, J. F. C. 1980. Mathematics of Genetic Diversity. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 34. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM).
- [B5] Kingman, J. F. C. 1993. Poisson Processes. Oxford Studies in Probability, vol. 3. Oxford: Oxford University Press.

^a This bibliography was prepared using the BibServer system developed by Jim Pitman with the assistance of NSF Award 0835851, Bibliographic Knowledge Network.

[B6] Kingman, J. F. C. 2002. Procesy Poissona. Wydawnictwo Naukowe PWN. Polish translation of [B5] by Bobrowski, A.

2 Books edited

- [E1] Ibragimov, I. A., and Linnik, Yu. V. 1971. Independent and Stationary Sequences of Random Variables. Groningen: Wolters-Noordhoff Publishing. With a supplementary chapter by I. A. Ibragimov and V. V. Petrov. Translation from the Russian edited by J. F. C. Kingman.
- [E2] Bodmer, W. F., and Kingman, J. F. C. (eds). 1983. Mathematical Genetics: Proceedings of a Royal Society Meeting held in London, April 20, 1983. London: Royal Society.
- [E3] Kingman, J. F. C., and Reuter, G. E. H. (eds). 1983. Probability, Statistics and Analysis. London Math. Soc. Lecture Note Ser., vol. 79. Cambridge: Cambridge University Press. Papers dedicated to David G. Kendall on the occasion of his sixty-fifth birthday.
- [E4] Kendall, D. G., with the assistance of Kingman, J. F. C. and Williams, D. (ed). 1986. Analytic and Geometric Stochastics: Papers in Honour of G. E. H. Reuter. Adv. in Appl. Probab., vol. 18 (Supplement). Sheffield: Applied Probability Trust.

3 Mathematical articles

- [M1] Kingman, J. F. C. 1960. A note on the axial symmetry of the disturbance. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci., 258, 87–89.
- [M2] Yih, Chia-Shun (with an appendix by Kingman, J. F. C.). 1960. Instability of a rotating liquid film with a free surface. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci., 258, 63–89. Expanded version of [M1].
- [M3] Kingman, J. F. C. 1961. A convexity property of positive matrices. Quart. J. Math. Oxford Ser. (2), 12, 283–284.
- [M4] Kingman, J. F. C. 1961. A mathematical problem in population genetics. Proc. Cambridge Philos. Soc., 57, 574–582.
- [M5] Kingman, J. F. C. 1961. On an inequality in partial averages. Quart. J. Math. Oxford Ser. (2), 12, 78–80.
- [M6] Kingman, J. F. C. 1961. The ergodic behaviour of random walks. Biometrika, 48, 391–396.
- [M7] Kingman, J. F. C. 1961. The single server queue in heavy traffic. Proc. Cambridge Philos. Soc., 57, 902–904.
- [M8] Kingman, J. F. C. 1961. Two similar queues in parallel. Ann. Math. Statist., 32, 1314–1323.
- [M9] Kingman, J. F. C. 1962. On queues in heavy traffic. J. Roy. Statist. Soc. Ser. B, 24, 383–392.