Lecture Notes in Applied and Computational Mechanics 63

Ulrich Langer

Martin Schanz

- Olaf Steinbach
Wolfgang L. Wendland
Editors

Fast Boundary Element
Methods in Engineering
- and Industrial Applications ~’

@ Springer



Fast Boundary Element
Methods in Engineering and
Industrial Applications

Ulrich Langer, Martin Schanz,
Olaf Steinbach, and Wolfgang L. Wendland (Eds.). .

@ Springer



Editors

Prof. Dr. Ulrich Langer Prof. Dr. Olaf Steinbach

Institut fiir Numerische Mathematik  Institut fiir Numerische Mathematik
Johannes Kepler Universitit Linz Technische Universitit Graz

4040 Linz, Austria 8010 Graz, Austria

Prof. Dr. -Ing. Martin Schanz Prof. Dr. -Ing. Dr. h. c. Wolfgang L. Wendland
Institut fiir Baumechanik Institut fiir Angewandte Analysis und
Technische Universitit Graz Numerische Simulation

8010 Graz, Austria Universitdt Stuttgart

70569 Stuttgart, Germany

ISSN: 1613-7736 e-ISSN: 1860-0816
ISBN: 978-3-642-25669-1 e-ISBN: 978-3-642-25670-7
DOI 10.1007/ 978-3-642-25670-7

Springer Heidelberg New York Dordrecht London
Library of Congress Control Number: 2011944752

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts
in connection with reviews or scholarly analysis or material supplied specifically for the purpose of
being entered and executed on a computer system, for exclusive use by the purchaser of the work.
Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright
Law of the Publisher's location, in its current version, and permission for use must always be obtained
from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance
Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Lecture Notes in Applied
and Computational Mechanics

Volume 63

Series Editors

Prof. Dr.-Ing. Friedrich Pfeiffer
Prof. Dr.-Ing. Peter Wriggers



Lecture Notes in Applied and Computational Mechanics

Edited by F. Pfeiffer and P. Wriggers

Further volumes of this series found on our homepage: springer.com

Vol. 63 Langer, U., Schanz, M., Steinbach, 0.,
Wendland, W. L. (Eds.)

Fast Boundary Element Methods in Engineering and
Industrial Applications

272 p. 2012 [978-3-642-25669-1]

Vol. 61 Frémond, M., Maceri, F. (Ed.)
Mechanics, Models and Methods in Civil Engineering
498 p. 2012 [978-3-642-24637-1]

Vol. 59 Markert, B., (Ed.)

Advances in Extended and Multifield Theories
for Continua

219 p. 2011 [978-3-642-22737-0]

Vol. 58 Zavarise, G., Wriggers, P. (Eds.)
Trends in Computational Contact Mechanics
354 p. 2011 [978-3-642-22166-8]

Vol. 57 Stephan, E., Ry
iggersP. -

Mgdeliing, Simulation and Software Concepts for

Scientific-Technological Problems

] ,."\251 p. 2011 [978-3-642-20489-0] = - *

Vol..54:§anchez-Palencip, B
Millet, O} Béchet, F. =

. Singular Problems in ShellTheory--

265 p. 2010 [978-3-642-13814-0]

Vol. 53: Litewka, P.
Finite Element Analysis of Beam-to-Beam Contact
159 p. 2010 [978-3-642-12939-1]

Vol. 52: Pilipchuk, V.N.
Nonlinear Dynamics: Between Linear and Impact Limits
364 p. 2010 [978-3-642-12798-4]

Vol. 51: Besdo, D., Heimann, B., Kliippel, M.,
Krager, M., Wriggers, P., Nackenhorst, U.
Elastomere Friction

249 p. 2010 [978-3-642-10656-9]

Vol. 50: Ganghoffer, J.-F., Pastrone, F. (Eds.)
Mechanics of Microstructured Solids 2
102 p. 2010 [978-3-642-05170-8]

Vol. 49: Hazra, S.B.

Large-Scale PDE-Constrained Optimization
in Applications

224 p. 2010 [978-3-642-01501-4]

Vol. 48:5u,Z,; Ye, L.
Identification of Damage Using Lamb Waves
346 p. 2009 [978-1-84882-783-7]

Vol. 47: Studer, C.
Numerics of Unilateral Contacts and Friction
191 p. 2009 [978-3-642-01099-6]

Vol. 46: Ganghoffer, J.-F., Pastrone, F. (Eds.)
Mechanics of Microstructured Solids
136 p. 2009 [978-3-642-00910-5]

Vol. 45: Shevchuk, LV.

Convective Heat and Mass Transfer in Rotating Disk
Systems

300 p. 2009 [978-3-642-00717-0]

Vol. 44: Ibrahim R.A., Babitsky, V.I., Okuma, M. (Eds.)
Vibro-Impact Dynamics of Ocean Systems and Related
Problems

280 p. 2009 [978-3-642-00628-9]

Vol.43: Ibrahim, RA.
Vibro-Impact Dynamics
312 p. 2009 [978-3-642-00274-8]

Vol. 42: Hashiguchi, K.
Elastoplasticity Theory
432 p. 2009 [978-3-642-00272-4]

Vol. 41: Browand, F., Ross, J., McCallen, R. (Eds.)
Aerodynamics of Heavy Vehicles II: Trucks, Buses,
and Trains

486 p. 2009 [978-3-540-85069-4]

Vol. 40: Pfeiffer, F.
Mechanical System Dynamics
578 p. 2008 [978-3-540-79435-6]

Vol. 39: Lucchesi, M., Padovani, C,, Pasquinelli, G., Zani, N.

Masonry Constructions: Mechanical
Models and Numerical Applications
176 p. 2008 [978-3-540-79110-2]

Vol. 38: Marynowski, K.
Dynamics of the Axially Moving Orthotropic Web
140 p. 2008 [978-3-540-78988-8]

Vol. 37: Chaudhary, H., Saha, S.K.
Dynamics and Balancing of Multibody Systems
200 p. 2008 [978-3-540-78178-3]



Preface

This volume on mathematical aspects and applications of fast boundary element
methods in engineering and industry contains eight contributions on the state of the
art in this field. This book is strongly related to the annual Sollerhaus workshops
on Fast Boundary Element Methods in Industrial Applications' where recent trends
and new methodologies are discussed to solve todays challenging problems in al-
most all areas of applications. The stimulating atmosphere of the S6llerhaus work-
shops contributed a lot to new developments and new interdisciplinary cooperations
which are also documented within this book. This spirit of strong cooperations be-
tween mathematicians and engineers, with direct applications in industry, follows
an already long—ongoing history. To underline this, we just mention the volumes
Boundary Element Topics (Springer 1997), Boundary Element Analysis. Mathemat-
ical Aspects and Applications (Springer 2007), and the special issue of Computing
and Visualization in Science (Volume 8, 2005), which indicate the development of
the mathematical foundations of boundary integral equation methods and the appli-
cations of fast boundary element methods.

Nowadays, fast boundary element methods are a powerful tool for the simulation
of physical phenomena in different fields of applications. In particular, boundary
integral equation techniques are well suited for the solution of partial differential
equations in unbounded exterior domains, or for problems which are considered
in complicated geometries, but with simple physical model assumptions. The lat-
ter also involves applications with nonlinear interface or transmission conditions, as
they appear in multiphysics simulations. Several of these aspects are covered within
this book. An efficient and accurate numerical simulation of time—dependent prob-
lems both in time and frequency domain belongs still to the most challenging prob-
lems. This book includes contributions on the mathematical analysis of boundary
integral formulations, the numerical analysis of boundary element methods and the
construction of robust and efficient preconditioning strategies, and the design and
implementation of fast boundary element methods to solve challenging problems of
interest.

I see http://www.numerik.math.tu-graz.ac.at/tagungen



Vi Preface

The aim of this book is to present some of the current developments of fast bound-
ary element methods and their applications. We are aware that such a book can not
cover all aspects in the analysis and applications of fast boundary element methods.
There are no contributions, e.g., for adaptive fast boundary element methods. Other
missing topics include the use of fast boundary element methods for the simula-
tion of complex multiphysics problems including the coupling with finite element
methods, as well as related inverse and shape optimization problems. In fact, this
book may serve to present some of the basic tools to handle the above mentioned
problems. The ongoing work on the solution of these problems will be reported
on future workshops and conferences, and the results will be documented in future
publications as well.

We would like to thank all authors for their contributions to this volume. More-
over, we also thank all anonymmous referees for their work, their criticism, and their
suggestions. These hints were very helpful to improve the contributions. Finally, we
would like to thank Dr. T. Ditzinger of Springer Heidelberg for the continuing sup-
port and patience while preparing this volume.

Graz, Linz, Stuttgart Ulrich Langer
September 2011 Martin Schanz
Olaf Steinbach

Wolfgang L. Wendland
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Differential Forms and Boundary Integral
Equations for Maxwell-Type Problems

Stefan Kurz and Bernhard Auchmann

»

Abstract. We present boundary-integral equations for Maxwell-type problems in
a differential-form setting. Maxwell-type problems are governed by the differen-
tial equation (8d — k?)@ = 0, where k € C holds, subject to some restrictions. This
problem class generalizes curl curl- and div grad-types of problems in three dimen-
sions. The goal of the paper is threefold: 1) Establish the Sobolev-space framework
in the full generality of differential-form calculus on a smooth manifold of arbitrary
dimension and with Lipschitz boundary. 2) Introduce integral transformations and
fundamental solutions, and derive a representation formula for Maxwell-type prob-
lems. 3) Leverage the power of differential-form calculus to gain insight into prop-
erties and inherent symmetries of boundary-integral equations of Maxwell-type.

1 Introduction

It is the goal of this paper to express the theory of boundary-integral equations for
Maxwell-type problems in the language of differential-form calculus. Maxwell-type
problems are governed by the differential equation

(6d —i*)w =0,

where k € C fulfills either k = 0 or 0 < argk < m,k # 0 [27, eq. (9.13)]. The ex-
terior derivative d and coderivative § will be defined in Sect. 2.1. This problem
class generalizes curlcurl- and divgrad-types of problems in three dimensions.

Stefan Kurz -
Tampere University of Technology, Department of Electronics, 33101 Tampere, Finland
e-mail: stefan.kurz@tut. fi

Bernhard Auchmann
CERN/TE, Geneva 1211, Switzerland
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U. Langer et al. (Eds.): Fast Boundary Element Methods, LNACM 63, pp. 1-62.
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2 S. Kurz and B. Auchmann

It encompasses electro- and magnetostatics (potential problems), eddy-current and
diffusion-type problems, as well as scattering problems.

In the authors™ view, differential-form calculus features a range of advantages
over classical vector analysis, that are particularly interesting in the field of boun-
dary-integral equations. We give four examples: (i) Being independent of dimen-
sion, operators of the same class act upon fields on the domain and on the boundary.
(ii) For a comprehensive treatment of the subject, only two families of functional
spaces are required on the domain and on the boundary, respectively. The two fam-
ilies are related via Hodge duality. (iii) Involved computations with cross-products
of normal vectors and tangent vectors are replaced by more elegant tools. (iv) A
discretization of the functional spaces in terms of discrete differential forms is read-
ily available and, in fact, an integral part of the differential-form setting. In this
context HIPTMAIR writes in [17, p. 239ff.]: "Suitable finite elements for electro-
magnetic fields should be introduced and understood as discrete differential forms.
... Finite elements that lack an interpretation as discrete differential forms have to
be used with great care.”. For establishing spaces of discrete differential forms on
two-dimensional surfaces we also point to [7, Sect. 4.1.].

The reader will find that, in many ways, the theory and proofs outlined in this
paper are reminiscent of vector-analysis literature. This is not surprising, since a
major part of our work consisted in translating classical proofs to the more general
differential-form setting. In other places, presumably well-known subjects may look
strangely unfamiliar. Study of the theory from the viewpoint of differential-form
calculus reveals structural layers that are often hidden or obscured by the nature
of vector analysis. For examples we point to the definition of generalized integral
transforms, the image spaces of Sobolev spaces under the Hodge operator, or the
symmetry of Calderén projectors under dual transformations. We hope that, with
this work, we can help to spark the curiosity for differential-form calculus in the
community, and do our share to lay the groundwork for future progress in the field.
After all, ROTA wrote [31, p. 46], "Exterior algebra is not meant to prove old facts,
it is meant to disclose a new world.”

From a historical perspective, the idea to generalize Maxwell’s equations, using
p-forms in n-dimensional Euclidean space, was first put forward in a seminal paper
by WEYL in 1952 [38]. Comparable work for the static case, that is, for potential
problems, was accomplished by KRESS in 1972 [23]. Related work about higher
dimensional electromagnetic scattering on Lipschitz domains in R" was published
by JAWERTH and MITREA in 1995 [21]. Recently, PAULY has published a series
of papers, where the low frequency asymptotics for generalized Maxwell equations
have been examined under rather general assumptions [29].

In Sect. 2 we give a concise summary of relevant topics of differential-form
calculus. This summary is intended mainly for reference purposes. Readers who
are not familiar with the formalism might want to consult [20], [16, Chap. A]
or [2, Sect. 2]. Sect. 2 also includes contributions on topics such as integral
transformations, and fundamental solutions of Helmholtz-type equations. So-called
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translation isomorphisms are introduced, that carry the differential-form setting
in three-dimensional Euclidean space over to the classical vector-analysis setting.
Sect. 3 presents a differential-form based Sobolev-space framework that sets the
scene for the discussion of Maxwell-type problems, their solutions, and boundary
data. The section builds upon a 2004 work by WECK [36]. Translation isomorphisms
are used to establish the link with Sobolev spaces in classical calculus. Sect. 4 is
devoted entirely to the representation formula for Maxwell-type problems. The re-
sults generalize the Kirchhoff and Stratton-Chu formulae. In Sect. 5 we introduce
boundary-integral operators and establish some of the properties that are required
to prove the well-posedness of boundary-value problems. Finally, Sect. 6 studies
properties of the Calderén projector and reveals a powerful symmetry with respect
to dual transformations.

In our notation, we seek to strike a balance between readability on the one hand,
and the addition of information that helps to interpret the compact differential-form
notation on the other hand. If in doubt, we tend to favor the former over the latter,
assuming that the generality and elegance of differential-form calculus best serve the
readers’ interest. For example, operators in Sect. 2 are defined for forms of arbitrary
degrees, and on (Riemannian) manifolds of arbitrary dimension. We therefore do
not generally distinguish in our notation between, for example, the Hodge operators
acting on forms of various degrees on a domain £2, and the Hodge operators acting
upon the traces of said forms on the boundary I'". The metric tensor which applies
in the definition of each operator is clear from the context. A generalization that we
did not adopt is to introduce graded Sobolev spaces on the entire exterior algebra of
differential forms. We have opted for spaces of homogeneous degree and highlight
the degree in the notation. All along the text, the relationship to results of classical
vector analysis is established in framed paragraphs, to keep the paradigms separate
in the main body of the paper.

2 Differential Forms — Preliminaries

In this section, we intend to summarize important results of differential-form calcu-
lus. Throughout the paper, n denotes the dimension of the problem domain; the
degree of forms is frequently denoted by p and g, which are always related by
g="1n—p.

Powers of minus one followed by operators, as in (—1)”7op, op, ¢, are to be read
as follows: The degree p refers to the differential form that the sequence of operators
acts upon from the left. In this example, p is the degree of the form ¢. n is always
the dimension of the problem domain, even if operators and forms on the domain
boundary are considered; and ¢ = n — p following the above rule.

2.1 Basic Definitions

We introduce differential forms on a smooth, orientable Riemannian manifold
(M,g) of finite dimension n, where g denotes the metric tensor. We have R3, or
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a subset thereof, with Euclidean metric in mind. Throughout this section V denotes
a vector space over a field IF, where F may be either R or C.

A simple p-vector may be thought of as an ordered p-tuple of vectors that belong
to a vector space V. The p-tuple is interpreted as a p-parallelepiped with oriented
volume. An elementary permutation in the tuple changes the orientation. A change
of orientation is indicated by a change of sign of the simple p-vector. More precisely,
a simple p-vector is an equivalence class of ordered p-tuples of vectors that (i) span
the same subspace of V; (ii) span p-parallelepipeds of identical oriented volume.
p-vectors are linear combinations of simple p-vectors. They form a vector space
APV of dimension (;), 0 < p < n. Up to dimension n = 3 all p-vectors are simple
p-vectors. We find A'V =V, APV = 0 for p > n and for p < 0, and we set A’V =TF.

Alternatively, p-vectors are defined in [15] via an isomorphism that identifies
APV with the vector space of skew-symmetric tensors of rank p over V.

Let (e;| 1 <i< n) denote an ordered basis of V. We pick an ordered basis of NPV

(es17 € 7p),

where J = ji j2... jp is a multiindex,

7 ={J=j1j2---Jpl1 S 1 < ja<-- < jp<n},

and ey is the equivalence class that contains the p-tupel (e, ,e;,,...,€;,).
The exterior product, or wedge product, is a bilinear mapping

ANV x AV o NFHY (v, w) = vAw,

defined by the following properties:

(i) A isassociative, WAV)AW=uA(vAw), ueNV;
(ii) A is graded anticommutative, v Aw = (—1)w A v for v € AV and w € A’V
(iii) 1Av=vforallve AV,

To compute the exterior product we first relate the basis vectors of V to those of
APV. Let K = kik ...k, be an arbitrary p-index, and o(K) a permutation of K.
Then we define

+€s(k) o(K) e lf", o even,
(AN he, =< —egx) O(K) € Z), oodd, (1)
0 otherwise.

[

Next we define for basis vectors e; € AKV, e, € 8%

erAey = (€ Ao Aei) A(ej Ao Aejy)
=€, N---Aej Aej A---Nej,
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where I € #/',J € #/'. The right hand side is defined by (1), or zero for k4 ¢ > n,
respectively. Finally, the exterior product extends by linearity to the entire spaces.
We say that APV is the p-th exterior power of V. The direct sum AV = A%V @A'V @
- @AV @ A"V is again a vector space. The pair (AV,A) has the structure of a
graded algebra. It is called the exterior algebra over V.

Recall that a tangent vector on a manifold can be defined as a directional-
derivative operator. Coordinates (x',...,x") on a patch U € M induce a canonical
coordinate basis (d,,...,dy) of the tangent space TxyM. Here TM is the tangent
bundle over M, and Ty M is a fibre in a point X € U. Cotangent vectors, on the other
hand, are elements of the dual space Ty M, the cotangent space. In particular, the
differential of a scalar function A on M taken at a point X is a cotangent vector. The
action of a cotangent vector (dA)x € Ty M on a vector v € TyM equals the direc-
tional derivative of A in direction of v, (dA)x(v) = v(A4). The canonical coordinate
basis of the cotangent space in a point X € U reads (dx',...,dx"), and we see that
dx'(d,) = ') = 51’ with 5} the Kronecker delta.

A vector field v is a section of 7M. The space of smooth vector fields (component
functions are C*) is denoted .2 (M). The space of smooth differential 1-forms is
denoted .7 (M); its elements are smooth sections of the cotangent bundle. Note that
the definitions of .2} (M) and .# ' (M) require smoothness of the manifold M.

A p-vector field is a section of the p-th exterior power of the tangent bundle
NPT M, whose fibres are the spaces APTyM. The space of smooth p-vector fields is
denoted 2 ,(M), and the space of smooth differential p-forms 7" (M).

Coordinate bases of .2,(M) and .7 (M) are givenin U C M by (dy |J € 7))
and (dx’ |J € F ,’,’), respectively. Hence the basis representation

0= Y wod e.F'(M),
JETY

where @; € C~(M) are the component functions.

In the sequel, we will encounter function spaces of differential forms. A generic
function space of p-forms defined on M will be denoted .7Z’A”(M). For instance,
FP(M) =C N (M).

We denote by

<|)X ZAPT;MX/V’T)(M—)]F

the algebraic duality product at a point X € M.
The exterior product above extends naturally to p-forms and p-vector fields. An
alternative notation is given by

i FUM) x FEKM) —» FHHRHM) : (0,1) = jno =N Ao,
and, analogously,

i Ze(M) x Zi(M) = Zok(M) 2 (V,W) = jwV =WAV.



