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Preface

The aim of this book is to give an introduction to time series analysis. The
emphasis is on methods for modeling of linear stochastic systems. Both time
domain and frequency domain descriptions will be given; however, emphasis
is on the time domain description. Due to the highly different mathematical
approaches needed for linear and non-linear systems, it is instructive to deal
with them in seperate textbooks, which is why non-linear time series analysis
is not a topic in this book—instead the reader is referred to Madsen, Holst,
and Lindstrém (2007).

Theorems are used to emphasize the most important results. Proofs are
given only when they clarify the results. Small problems are included at the
end of most chapters, and a separate chapter with real-life problems is included
as the final chapter of the book. This also serves as a demonstration of the
many possible applications of time series analysis in areas such as physics,
engineering, and econometrics.

During the sequence of chapters, more advanced stochastic models are
gradually introduced; with this approach, the family of linear time series
models and methods is put into a clear relationship. Following an initial
chapter covering static models and methods such as the use of the general
linear model for time series data, the rest of the book is devoted to stochastic
dynamic models which are mostly formulated as difference equations, as in the
famous ARMA or vector ARMA processes. It will be obvious to the reader
of this book that even knowing how to solve difference equations becomes
important for understanding the behavior of important aspects such as the
autocovariance functions and the nature of the optimal predictions.

The important concept of time-varying systems is dealt with using a
state space approach and the Kalman filter. However, the strength of also
using adaptive estimation methods for on-line forecasting and control is often
not adequately recognized. For instance, in finance the classical methods
for forecasting are often not very useful, but, by using adaptive techniques,
interesting results are often obtained.

The last chapter of this book is devoted to problems inspired by real
life. Solutions to the problems are found at http://www.imm.dtu.dk/~hm/
time.series.analysis. This home page also contains additional exercises,
called assignments, intended for being solved using a computer with dedicated



software for time series analysis.
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CHAPTER 1

Introduction

Time series analysis deals with statistical methods for analyzing and modeling
an ordered sequence of observations. This modeling results in a stochastic
process model for the system which generated the data. The ordering of
observations is most often, but not always, through time, particularly in terms
of equally spaced time intervals. In some applied literature, time series are
often called signals. In more theoretical literature a time series is just an
observed or measured realization of a stochastic process.

This book on time series analysis focuses on modeling using linear models.
During the sequence of chapters more and more advanced models for dynamic
systems are introduced; by this approach the family of linear time series models
and methods are placed in a structured relationship. In a subsequent book,
non-linear time series models will be considered.

At the same time the book intends to provide the reader with an un-
derstanding of the mathematical and statistical background for time series
analysis and modeling. In general the theory in this book is kept in a second
order theory framework, focussing on the second order characteristics of the
persistence in time as measured by the autocovariance and autecorrelation
functions.

The separation of linear and non-linear time series analysis into two books
facilitates a clear demonstration of the highly different mathematical ap-
proaches that are needed in each of these two cases. In linear time series
analysis some of the most important approaches are linked to the fact that
superposition is valid, and that classical frequency domain approaches are
directly usable. For non-linear time series superposition is not valid and
frequency domain approaches are in general not very useful.

The book can be seen as a text for graduates in engineering or science
departments, but also for statisticians who want to understand the link be-
tween models and methods for linear dynamical systems and linear stochastic
processes. The intention of the approach taken in this book is to bridge the
gap between scientists or engineers, who often have a good understanding of
methods for describing dynamical systems, and statisticians, who have a good
understanding of statistical theory such as likelihood-based approaches.

In classical statistical analysis the correlation of data in time is often
disregarded. For instance in regression analysis the assumption about serial
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uncorrelated residuals is often violated in practice. In this book it will be
demonstrated that it is crucial to take this autocorrelation into account in the
modeling procedure. Also for applications such as simulations and forecasting,
we will most often be able to provide much more reasonable and realistic
results by taking the autocorrelation into account.

On the other hand adequate methods and models for time series analysis
can often be seen as a simple extension of linear regression analysis where
previous observations of the dependent variable are included as explanatory
variables in a simple linear regression type of model. This facilitates a rather
easy approach for understanding many methods for time series analysis, as
demonstrated in various chapters of this book.

There are a number of reasons for studying time series. These include a
characterization of time series (or signals), understanding and modeling the
data generating system, forecasting of future values, and optimal control of a
systemi.

In the rest of this chapter we will first consider some typical time series and
briefly mention the reasons for studying them and the methods to use in each
case. Then some of the important methodologies and models are introduced
with the help of an example where we wish to predict the monthly wheat
prices. Finally the contents of the book is outlined while focusing on the model
structures and their basic relations.

1.1 Examples of time series

In this section we will show examples of time series, and at the same time
indicate possible applications of time series analysis. The examples contain
both typical examples from economic studies and more technical applications.

1.1.1 Dollar to Euro exchange rate

The first example is the daily US dollar to Euro interbank exchange rate
shown in Figure 1.1. This is a typical economic time series where time series
analysis could be used to formulate a model for forecasting future values of
the exchange rate. The analysis of such a problem relates to the models and
methods deseribed in Chapters 3, 5, and 6.

1.1.2 Number of monthly airline passengers

Next we consider the number of monthly airline passengers in the US shown
in Figure 1.2. For this series a clear annual variation is seen. Again it might
be useful to construct a model for making forecasts of the future number of
airline passengers. Models and methods for analyzing time series with seasonal
variation are described in Chapters 3, 5, and 6.
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Figure 1.1: Daily US dollar toe Furo interbank exchange rate.

60000

50000

Airline passengers

40000

1

T T L I A B R A S L L R B |
1995 1996 1997 1993 1999 2000 2001 2002

Figure 1.2: Number of monthly airline passengers in the US. A clear annual variation
can be seen in the series.

1.1.3 Heat dynamics of a building

Now let us consider a more technical example. Figure 1.3 on the following
page shows measurements from an unoccupied test building. The data on
the lower plot show the indoor air temperature, while on the upper plot the
ambient air temperature, the heat supply, and the solar radiation are shown.

For this example it might be interesting to characterize the thermal behavior
of the building. As a part of that the so-called resistance against heat flux from
inside to outside can be estimated. The resistance characterizes the insulation
of the building. It might also be useful to establish a dynamic model for the
building and to estimate the time constants. Knowledge of the time constants
can be used for designing optimal controllers for the heat supply.
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Figure 1.3: Measurements from en unoccupied test building. The input variables are
(1) solar radiation, (2) ambient air temperature, and (3) heat input. The output
variable is the indoor air temperature.

Yor this case methods for transfer function modeling as described in Chap-
ter 8 can be used, where the input (explanatory) variables are the solar
radiation, heat input, and outdoor air temperature, while the output (depen-
dent) variable is the indoor air temperature. For the methods in Chapter 8 it
is crucial that all the signals can be classified as either input or output series
related to the system considered.

1.1.4 Predator-prey relationship

This example illustrates a typical multivariate time series, since it is not
possible to classify one of the series as input and the other series as output.
Figure 1.4 shows a widely studied predator-prey case, namely the series of
annually traded skins of muskrat and mink by the Hudson’s Bay Company
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Figure 1.4: Annually traded skins of muskrat and mink by the Hudson’s Bay Company
after logarithmic transformation. It is not possible to classify one of the series as
input and the other series as output.

during the 62 year period 1850-1911. In fact the population of muskrats
depends on the population of mink, and the population of mink depends on
the number of muskrats. In such cases both series must be included in a
multivariate time series. This series has been considered in many texts on time
series analysis, and the purpose is to describe in general the relation between
populations of muskrat and mink. Methods for analyzing such multivariate
series are considered in Chapter 9.

1.2 A first crash course

Let us introduce some of the most important concepts of time series analysis
by considering an example where we look for simple models for predicting the
monthly prices of wheat.

In the following, let P; denote the price of wheat at time (month) ¢. The
first naive guess would be to say that the price next month is the same as in
this month. Hence, the predictor is

pt+1|t =F. (1.1)

This predictor is called the naive predictor or the persistent predictor. The
syntax used is short for a prediction (or estimate) of P, given the observations
Py, Piq,. ...

Next month, i.e., at time ¢ + 1, the actual price is F;4;. This means that
the prediction error or innovation may be computed as

€41 = Pr1 — Prpy)e - (1.2)
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By combining Equations (1.1) and (1.2) we obtain the stochastic model for
the wheat price

P,=P_1+g (1.3)

If {e;} is a sequence of uncorrelated zero mean random variables (white noise),
the process (1.3) is called a random walk. The random walk model is very
often seen in finance and econometrics. For this model the optimal predictor
is the naive predictor (1.1).

The random walk can be rewritten as

R:5t+5t—1+"' (1.4)

which shows that the random walk is an integration of the noise, and that the
variance of P; is unbounded; therefore, no stationary distribution exists. This
is an example of a non-stationary process.

However, it is obvious to try to consider the more general model

Po=ypP_1+¢e (1.5)

called the AR(1) model (the autoregressive first order model). For this process
a stationary distribution exists for |¢| < 1. Notice that the random walk is
obtained for ¢ = 1.

Another candidate for a model for wheat prices is

Po=9P_1n+e (1.6)

which assumes that the price this month is explained by the price in the same
month last year. This seems to be a reasonable guess for a simple model, since
it is well known that wheat price exhibits a seasonal variation. (The noise
processes in (1.5) and (1.6) are, despite the notation used, of course, not the
same).

For wheat prices it is obvious that both the actual price and the price in
the same month in the previous year might be used in a description of the
expected price next month. Such a model is obtained if we assume that the
innovation &; in model (1.5) shows an annual variation, i.e., the combined
model is

(Py — 9P, 1) —9(P12 —pP13) = €. (1.7)

Models such as (1.6) and (1.7) are called seasonal models, and they are used
very often in econometrics.

Notice, that for ¥ = 0 we obtain the AR(1) model (1.5), while for ¢ = 0
the most simple seasonal model in (1.6) is obtained.

By introducing the backward shift operator B by

B*P, = P,_, (1.8)



