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Now the smallest Particles of Matter may cohere by the strongest
Attractions, and compose bigger Particles of weaker Virtue.... There are
therefore Agents in Nature able to make the Particles of Bodies stick
together by very strong Attractions. And it is the Business of experimental
Philosophy to find them out.

Newton, Optics (1680)

Les Philosophes qui font des systémes sur la secréte construction de
I'univers, sont comme nos voyageurs qui vont a Constantinople, et qui
parlent du Sérail: Ils n’en ont vu que les dehors, et ils prétendent savoir ce
que fait le Sultan avec ses Favorites.

Voltaire, Pensées Philosophiques (1766)
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PREFACE TO THE THIRD EDITION

The main intention behind this book has been to present the more important
aspects of the field of high-energy physics, or particle physics, at an
elementary level. The content is based on courses of lectures given to
undergraduates in Oxford specializing in nuclear physics, but the book would
also serve as an introductory text for first-year graduate students in experi-
mental high-energy physics. I have tried to make the coverage as broad as
possible while keeping the text to a reasonable length.

Since the first edition was written sixteen years ago, high-energy
physics has undergone many revolutionary developments, and both the
volume and range of the subject has increased many times. This has meant a
substantial rewriting of the text and a modest expansion in length. The
interrelation between different aspects of the subject is now so strong that the
division of the material under the various chapter headings has perforce been
rather arbitrary.

The first chapter presents basic introductory ideas, the historical
development, and a brief overview of the subject; the second and third
chapters deal with experimental methods, conservation laws, and invariance
principles—just as in the first edition. The following chapters deal in turn
with the main features of the interactions between hadrons; the description of
the hadrons in terms of quark constituents, and discussion of the basic
interactions-electromagnetic, weak and strong-between the lepton and
quark constituents. The final chapter discusses unification of the various
interactions. During the last few years, the astrophysical and cosmological
implications of results and ideas from high-energy physics have become
important and indeed vital to our understanding of the development of the
universe. I have tried to convey some of the flavor of this connection, since it
will clearly help to shape the trends in high-energy physics in the foreseeable
future.

As in the first edition, the interplay between experiment and theory
has been emphasized, and some discussion given of key experiments in the
field. Long theoretical treatments have been avoided, and for much of the
mathematical detail the student is referred to Appendices or other texts.
Some knowledge of elementary quantum mechanics is assumed, but generally
the material has been presented from the empirical viewpoint, with a
minimum of formalism and using an intuitive approach. Physics is about
numbers, and I have taken the view that it was more important that a student
should know how to calculate a cross-section or a decay rate, in order of
magnitude, than how to derive a complicated formula (usually based on
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viii Preface to the Third Edition

assumptions of questionable validity) without any real idea on how to
confront it with experiment. In the same spirit, I have included a list
of (mostly numerical) problems for each chapter, together with worked
solutions at the end of the book.
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CHAPTER 1

Introduction and Overview

1.1. INTRODUCTION

High-energy physics deals basically with the study of the ultimate constitu-
ents of matter and the nature of the mteractmqgj__egyc en them. Experimental
research in this field of science is carried out with giant partlcle accelerators
and their associated detection equipment. High energies are necesssary for
two reasons: First, in order to localize the investigations to the very small
scales of distance associated with the elementary constituents, one requires
radiation of the smallest possible wavelength and highest possible energy;
second, many of the fundamental constituents have large masses and require
correspondingly high energies for their creation and study.

Fifty years ago, only a few “elementary” particles—the proton and
neutron, the electron and neutrino, together with the electromagnetic field
quantum (the photon)—were known. The universe as we know it today
appears indeed to be composed almost entirely of these particles. However,
attempts to understand the details of the nuclear force between protons and
neutrons, as well as to follow up the pioneering discoveries of new, unstable
particles observed in the cosmic rays, led to the construction of ever larger
accelerators and to the observation of many hundreds of new unstable
particle states, collectively called hadrons (strongly interacting particles).
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2 Introduction and Overview

Out of this seeming chaos has emerged a rather simple picture:

—3e), and the leptons, like the electron and neutrino, carrying
integral electric charges. Neutrons and protons are built from
quarks, three at a time.

(ii) These constituents can interact by exchange of various funda-
mental bwwmgle_s) which are the carriers or
quanta of four distinct types of fundamental interaction or field.
Gravity is familiar to everyone, yet on the scales of mass and
distance involved in particle physics, it is by far the least
important of the four. Apart from gravity, electromagnetic
interactions account for most extranuclear phenomena in phys-
ics (because electromagnetic forces have the longest range) and
lead to the bound states of atoms and molecules. Weak inter-
actions are exemplified by the extremely slow process of radio-
active f-decay of nuclei. Strong interactions are postulated to
hold together the quarks in a proton, and their residual effects
apparently account for the interactions between neutrons and
protons, that is, for the nuclear binding force. Both weak and
strong interactions are of short range (less than or of order one
fermi or femtometer, 1 fm = 10715 m).

There are many unusual, even bizarre, aspects of this picture. The
fractionally charged quarks have not been observed as free particles, and
seem to be permanently confined in hadrons. Quarks come in a variety of
types or flavors (six are known) as do the leptons (three types of charged and
of neutral leptons). We neither understand the mechanism of confinement,
nor the real reason for the “Xerox copies” of quark and lepton flavors, when
the universe, on the basis of what we see today, seems to be constructed
predominantly from just two types of quark and one neutral and one charged
lepton.

The multiplicity of quark and lepton flavors is paralleled by the
existence of the four types of fundamental interaction. Here, some real
progress has been made. There are good grounds for supposing that some,
perhaps all, the interactions are unified, that is, different aspects of one single
interaction. The weak and electromagnetic interactions appear to have the
same intrinsic coupling of fermion constituents to the respective mediating
bosons—they are different aspects of a single electroweak interaction. Com-
pared with electromagnetism (mediated by the massless photon field with
infinite range), the weakness of the weak interactions is ascribed to their
short-range nature (they are mediated by massive bosons W*, Z° whose
mass is found to be of order 100 proton masses). At high enough energies and
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momentum transfers, well above such a mass scale, electromagnetic and weak
interactions should have the same actual strength.

Why the high-energy symmetry is badly broken at low energy, and
the respective bosons have such widely differing masses, is still an unsolved
problem. The important point however is that the strengths of the different
interactions are not fixed once and for all; they depend on energy scales. At
high energies, strong interactions appear to grow weaker, and the strong and
electroweak interactions may also merge at the colossal energy of 10'5 GeV.

The study of particle physics is considered to be intimately con-
nected with evolution of the universe. We believe the universe originated in a
“big bang” expansion of an energy bubble, from which all types of particles
—aquarks, leptons and quanta—were created. Today, we are left with the
expanded, cooled remnant. So, our search toward higher energies is also a
look backward in time to the very earliest stages of creation, which
determined the characteristics of the universe we find today.

1.2. FERMIONS AND BOSONS

One of the most fundamental concepts underlying our analysis of the
interactions of particles and fields is the spin-statistics theorem (Pauli 1940),
connecting the statistics obeyed by a particle with its spin angular momen-
tum. Particles with half-integral spin (3#, 34, ...) obey Fermi-Dirac statistics
and are thus called fermions, while those with integral spin (0, A, 24, ...) obey
Bose-Einstein statistics and are called bosons.

The statistics obeyed by a particle determines the symmetry of the
wavefunction y describing a pair of identical particles, say 1 and 2, under
interchange. If the particles are identical, then the square of the wavefunction,
|y|%, giving the probability of particle 1 at one coordinate and particle 2 at
another, will be unaltered by the interchange 1 <> 2. Thus,

12
Y -ty
The following rule holds:
Identical bosons: =y +y symmetric
(1.1)
Identical fermions: =g —y antisymmetric

In order to make use of this rule, the total wavefunction of the pair
can be expressed as a product of functions depending on spatial coordinates
and spin orientation:

Y = a(space) f(spin). (1.2)



4 Introduction and Overview

Figure 1.1 Examples of the decay sequence n* — u* — ™ in G5 emulsion exposed at Pic du
Midi. The constancy of range (~600 um) of the muon implies two-body decay at rest of the pion:
nt — pu* + v,. The first examples of pion decay were observed by Lattes, Muirhead, Occhialini,
and Powell in 1947. Note the very dense ionization of both pion and muon tracks near the end of
the range, compared with the thin track of the relativistic electron, as well as the lateral
deflections (Coulomb scattering) of the muon as it traverses the emulsion.

The spatial part, a, could describe orbital motion of one particle
about the other, and can then be represented by a spherical harmonic
function YJ'(0, ¢), as described in Chapter 3. Interchange of the space
coordinates of particles 1 and 2 (leaving spin alone) is equivalent to the
replacement  — n — 0, ¢ — ¢ + =, and introduces a factor (— 1)' multiplying
o, where [ is the orbital quantum number. Thus, if / is even (odd), the function
o is symmetric (antisymmetric) under interchange. As also indicated in



