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Preface

Introduction

This text is based on a course of thirty three lectures in geometric
mechanics, taught annually by the author to fourth year undergrad-
uates in their last term in applied mathematics at Imperial College
London. The text mimics the lectures, which attempt to provide
an air of immediacy and flexibility in which students may achieve
insight and proficiency in using one of the fundamental approaches
for solving a variety of problems in geometric mechanics. This is the
Euler-Poincaré approach, which uses Lie group invariance of Hamil-
tonian’s principle to produce symmetry-reduced motion equations
and reveal their geometrical meaning. It has been taught to students
with various academic backgrounds from mathematics, physics and
engineering.

Each chapter of the text is presented as a line of inquiry, often
by asking sequences of related questions such as, What is angular
velocity? What is kinetic energy? What is angular momentum? and
so forth. In adopting such an inquiry-based approach, one focuses on
a sequence of exemplary problems, each of whose solutions facilitates
taking the next step. The present text takes those steps, forgoing
any attempt at mathematical rigour. Readers more interested in a
rigorous approach are invited to consult some of the many citations
in the bibliography which treat the subject in that style.

xiii
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Prerequisites

The prerequisites are standard for an advanced undergraduate stu-
dent. Namely, the student should be familiar with linear algebra of
vectors and matrices, ordinary differential equations, multivariable
calculus and have some familiarity with variational principles and
canonical Poisson brackets in classical mechanics at the level of a
second or third year undergraduate in mathematics, physics, and en-
gineering. An undergraduate background in physics is particularly
helpful, because all the examples of rotating, spinning and rolling
rigid bodies treated here from a geometric viewpoint are familiar
from undergraduate physics classes.

How to read this book

Most of the book is meant to be read in sequential order from front
to back. The 120 Exercises and 55 Worked Answers are indented
and marked with % and A, respectively.

Key theorems, results and remarks are placed into frames
(like this one).

The three appendices provide supplementary material, such as
condensed summaries of the essentials of manifolds (Appendix A)
and Lie groups (Appendix B) for students who may wish to acquire
a bit more mathematical background. In addition, the appendices
provide material for supplementary lectures that extend the course
material. Examples include variants of rotating motion that depend
on more than one time variable, as well as rotations in complex space
and in higher dimensions in Appendix C. The appendices also contain
ideas for additional homework and exam problems that go beyond
the many exercises and examples sprinkled throughout the text.

Description of contents

Galilean relativity and the idea of a uniformly moving reference frame
are explained in Chapter 1. Rotating motion is then treated in
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Chapters 2, 3 and 4, first by reviewing Newton’s and Lagrange’s
approaches, then following Hamilton’s approach via quaternions and
Cayley-Klein parameters, not Euler angles.

Hamilton’s rules for multiplication of quaternions introduced the
adjoint and coadjoint actions that lie at the heart of geometric me-
chanics. For the rotations and translations in R? studied in Chapters
5 and 6, the adjoint and coadjoint actions are both equivalent to the
vector cross product. Poincaré [Po1901] opened the field of geometric
mechanics by noticing that these actions define the motion generated
by any Lie group.

When applied to Hamilton’s principle defined on the tangent
space of an arbitrary Lie group, the adjoint and coadjoint actions
studied in Chapter 6 result in the Euler-Poincaré equations derived
in Chapter 7. Legendre transforming the Lagrangian in Hamilton’s
principle summons the Lie-Poisson Hamiltonian formulation of dy-
namics on a Lie group. The Euler-Poincaré equations provide the
framework for all of the applications treated in this text. These ap-
plications include finite dimensional dynamics of three-dimensional
rotations and translations in the special Euclidean group SE(3). The
Euler-Poincaré problem on SFE(3) recovers Kirchhoff’s classic treat-
ment in modern form of the dynamics of an ellipsoidal body moving
in an incompressible fluid flow without vorticity.

The Euler-Poincaré formulation of Kirchhoff’s problem on SE(3)
in Chapter 7 couples rotations and translations, but it does not
yet introduce potential energy. The semidirect-product structure
of SE(3), however, introduces the key idea for incorporating poten-
tial energy. Namely, the same semidirect-product structure is also
invoked in passing from rotations of a free rigid body to rotations of
a heavy top with a fired point of support under gravity. Thereby,
semidirect-production reduction becomes a central focus of the text.

The heavy top treated in Chapter 8 is a key example, because
it introduces the dual representation of the action of a Lie algebra
on a vector space. This is the diamond operation (o), by which
the forces and torques produced by potential energy gradients are
represented in the Euler-Poincaré framework in Chapters 9, 10 and
11. The diamond operation (¢ ) is then found in Chapter 12 to lie
at the heart of the standard (cotangent-lift) momentum map.
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Chapter 1

Galileo

1.1 Principle of Galilean relativity

Galileo Galilei

Principles of relativity address the prob-
lem of how events that occur in one place
or state of motion are observed from an-
other. And if events occurring in one
place or state of motion look different
from those in another, how should one
determine the laws of motion?

Galileo approached this problem via a
thought experiment which imagined ob-
servations of motion made inside a ship
by people who could not see outside.

Galileo showed that the people isolated inside a uniformly moving

ship are unable to determine by measurements made inside it whether

they are moving!

... have the ship proceed with any speed you like, so long

as the motion is uniform and not fluctuating this way

and that. You will discover not the least change in all

the effects named, nor could you tell from any of them

whether the ship was moving or standing still.
Galileo Galilei, Dialogue Concerning the Two Chief
World Systems [Gal632]
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Galileo’s thought experiment showed that a man who is below decks
on a ship cannot tell whether the ship is docked or is moving uni-
formly through the water at constant velocity. He may observe water
dripping from a bottle, fish swimming in a tank, butterflies flying,
etc. Their behaviour will be just the same, whether the ship is mov-
ing or not.

Definition 1.1.1 (Galilean transformations)

Transformations of reference location, time, orientation or state of
uniform translation at constant velocity are called Galilean trans-
formations.

Definition 1.1.2 (Uniform rectilinear motion)
Coordinate systems related by Galilean transformations are said to
be in uniform rectilinear motion relative to each other.

Galileo’s thought experiment led him to the following principle.

Definition 1.1.3 (Principle of Galilean relativity)
The laws of motion are independent of reference location, time, ori-
entation, or state of uniform translation at constant velocity. Hence,
these laws are invariant under Galilean transformations.

Remark 1.1.4 (Two tenets of Galilean relativity)
Galilean relativity sets out two important tenets:

(1) It is impossible to determine who is actually at rest; and
(2) Objects continue in uniform motion unless acted upon.
The second tenet is known as Galileo’s Law of Inertia.
1t is also the basis for Newton’s First Law of Motion.

1.2 (Galilean transformations

Definition 1.2.1 (Galilean transformations)
Galilean transformations of a coordinate frame consist of space-time
translations, rotations and reflections of spatial coordinates, as well
as Galilean “boosts” into uniform rectilinear motion.

In three dimensions, the Galilean transformations depend smoothly
on ten real parameters, as follows:
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e Space-time translations,
gi(r,t) = (r +ro,t +tp).

These possess four real parameters: (ro,tg) € R3 x R, for the
three dimensions of space, plus time.

e Spatial rotations and reflections,
go(r.t) = (Or,1)

for any linear orthogonal transformation O : R3N s R3N with
OT = O~'. These have three real parameters, for the three
azes of rotation and reflection.

o Galilean boosts into uniform rectilinear motion,
g3(r,t) = (r + vot, t).

These have three real parameters: vo € R3, for the three direc-
tions and rates of motion.

Definition 1.2.2 (Group)
A group G is a set of elements that possesses a binary product (mul-
tiplication), G x G — G, such that the following properties hold:

1. The product gh of g and h is associative, that is, (gh)k = g(hk).

2. An identity element exists, e: eg = g and ge = g, for all g € G.

3. Inverse operation G — G, so that gg_l = g’lg = @
Definition 1.2.3 (Lie group)
A Lie group is a group that depends smoothly on a set of parameters.

That is, a Lie group is both a group and a smooth manifold, for which
the group operations are smooth functions.

Proposition 1.2.4 (Lie group property)
Except for reflections, Galilean transformations form a Lie group.
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Proof. Any Galilean transformation g € G(3) : R¥N xR — R3N xR
may be expressed uniquely as a composition of the three basic trans-
formations {g1,92,93} € G(3). Consequently, the set of elements
comprising the transformations {gi, g2, 93} € G(3) closes under the
binary operation of composition. The Galilean transformations also
possess an identity element e : eg; = ¢g; = gie, i = 1,2, 3, and each
' =e=gTg.
These are the defining relations of a group. The smooth dependence

clement ¢ possesses a unique inverse g1, so that gg~

of the group of Galilean transformations on its ten parameters means
the the Galilean group G(3) is a Lie group (except for the re-
flections, which are discrete, not smooth). |

Remark 1.2.5
Compositions of Galilean boosts and translations commute. That is,

9193 = g34g1 -

However, the order of composition does matter in the composition of
Galilean transformations when rotations and reflections are involved.
For example, the action of the Galilean group composition gi1gsgz on
(r,t) from the left is given by

g(r,t) = (Or+tvo+ro,t+to),
for
g = g1(ro,10)93(v0)g2(0) =: 919392 -
Exercise. Write the corresponding transformations for
§19293, 929193 and g3gagr as well, showing how they de-
pend on the order in which the rotations, boosts and

translations are composed. Write the inverse transfor-
mation for each of these compositions of left actions.

*

Answer. For translations, gi(ro,tp), rotations g2(O) and boosts



