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Preface

Elementary Number Theory in Nine Chapters is primarily intended for a
one-semester course for upper-level students of mathematics, in particular,
for prospective secondary school teachers. The basic concepts illustrated in
the text can be readily grasped if the reader has a good background in high
school mathematics and an inquiring mind. Earlier versions of the text
have been used in undergraduate classes at Providence College and at the
United States Military Academy at West Point.

The exercises contain a number of elementary as well as challenging
problems. It is intended that the book should be read with pencil in hand
and an honest attempt made to solve the exercises. The exercises are not
just there to assure readers that they have mastered the material, but to
make them think and grow in mathematical maturity.

While this is not intended to be a history of number theory text, a
genuine attempt is made to give the reader some insight into the origin and
evolution of many of the results mentioned in the text. A number of
historical vignettes are included to humanize the mathematics involved.
An algorithm devised by Nicholas Saunderson the blind Cambridge
mathematician is highlighted. The exercises are intended to complement
the historical component of the course.

Using the integers as the primary universe of discourse, the goals of the
text are to introduce the student to:

the basics of pattern recognition,

the rigor of proving theorems,

the applications of number theory,

the basic results of elementary number theory.

Students are encouraged to use the material, in particular the exercises,
to generate conjectures, research the literature, and derive results either
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X Preface

individually or in small groups. In many instances, knowledge of a pro-
gramming language can be an effective tool enabling readers to see
patterns and generate conjectures.

The basic concepts of elementary number theory are included in the first
six chapters: finite differences, mathematical induction, the Euclidean
Algorithm, factoring, and congruence. It is in these chapters that the
number theory rendered by the masters such as Euclid, Fermat, Euler,
Lagrange, Legendre, and Gauss is presented. In the last three chapters we
discuss various applications of number theory. Some of the results in
Chapter 7 and Chapter 8 rely on mathematical machinery developed in the
first six chapters. Chapter 7 contains an overview of cryptography from the
Greeks to exponential ciphers. Chapter 8 deals with the problem of
representing positive integers as sums of powers, as continued fractions,
and p-adically. Chapter 9 discusses the theory of partitions, that is, various
ways to represent a positive integer as a sum of positive integers.

A note of acknowledgment is in order to my students for their persis-
tence, inquisitiveness, enthusiasm, and for their genuine interest in the
subject. The idea for this book originated when they suggested that I
organize my class notes into a more structured form. To the many excellent
teachers 1 was fortunate to have had in and out of the classroom, in
particular, Mary Emma Stine, Irby Cauthen, Esayas Kundert, and David C.
Kay, I owe a special debt of gratitude. I am indebted to Bela Bollobas, Jim
McGovern, Mark Rerick, Carol Hartley, Chris Arney and Shawnee
McMurran for their encouragement and advice. I wish to thank Barbara
Meyer, Liam Donohoe, Gary Krahn, Jeff Hoag, Mike Jones, and Peter
Jackson who read and made valuable suggestions to earlier versions of the
text. Thanks to Richard Connelly, Frank Ford, Mary Russell, Richard
Lavoie, and Dick Jardine for their help solving numerous computer soft-
ware and hardware problems that I encountered. Thanks to Mike Spiegler,
Matthew Carreiro, and Lynn Briganti at Providence College for their
assistance. Thanks to Roger Astley and the staff at Cambridge University
Press for their first class support. I owe an enormous debt of gratitude to
my wife, Terry, and daughters Virginia and Alexandra, for their infinite
patience, support, and understanding without which this project would
never have been completed.



Preface to the Second Edition

The organization and content of this edition is basically the same as the
previous edition. Information on several conjectures and open questions
noted in the earlier edition have been updated. To meet the demand for
more problems, over 375 supplementary exercises have been added to the
text. The author is indebted to his students at Providence College and
colleagues at other schools who have used the text. They have pointed out
small errors and helped clarify parts that were obscure or diffuse. The
advice of the following colleages was particularly useful: Joe Albree,
Auburn University at Montgomery; Ed Burger, Williams College; Under-
wood Dudley, DePauw University; Stan Izen, the Latin School of Chicago;
John Jaroma, Austin College; Shawnee McMurran, California State Uni-
versity at San Bernardino; Keith Matthews, University of Queensland;
Thomas Moore, Bridgewater State College; Victor Pambuccian, Arizona
State University; Tim Priden, Boulder, Colarado; Aldo Scimone, Italy; Jeff
Stopple, University of California at Santa Barbara; Robert Vidal, Nar-
bonne, France; and Thomas Weisbach, San Jose, California. I am also
particularly indebted to the helpful suggestions from Mary Buckwalter,
Portsmouth, Rhode Island, John Butler of North Kingston, Rhode Island,
and Lynne DeMasi of Providence College. The text reads much better as a
result of their help. I remain solely responsible for any errors or short-
comings that remain.
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1
The intriguing natural numbers

‘The time has come,” the Walrus said, ‘To talk of many things.’
Lewis Carroll

1.1 Polygonal numbers

We begin the study of elementary number theory by considering a few
basic properties of the set of natural or counting numbers, {1, 2, 3, ...}.
The natural numbers are closed under the binary operations of addition and
multiplication. That is, the sum and product of two natural numbers are
also natural numbers. In addition, the natural numbers are commutative,
associative, and distributive under addition and multiplication. That is, for
any natural numbers, a, b, c:

a+(b+c)=(a+b)+c, a(bc) = (ab)c (associativity);
at+b=>b+a, ab = ba (commutativity);
a(b+ c) = ab + ac, (a+ b)c = ac+ be  (distributivity).

We use juxtaposition, xy, a convention introduced by the English mathema-
tician Thomas Harriot in the early seventeenth century, to denote the
product of the two numbers x and y. Harriot was also the first to employ
the symbols ‘>’ and ‘<’ to represent, respectively, ‘is greater than’ and ‘is
less than’. He is one of the more interesting characters in the history of
mathematics. Harriot traveled with Sir Walter Raleigh to North Carolina in
1585 and was imprisoned in 1605 with Raleigh in the Tower of London
after the Gunpowder Plot. In 1609, he made telescopic observations and
drawings of the Moon a month before Galileo sketched the lunar image in
its various phases.

One of the earliest subsets of natural numbers recognized by ancient
mathematicians was the set of polygonal numbers. Such numbers represent
an ancient link between geometry and number theory. Their origin can be
traced back to the Greeks, where properties of oblong, triangular, and
square numbers were investigated and discussed by the sixth century BC,
pre-Socratic philosopher Pythagoras of Samos and his followers. The

1



2 The intriguing natural numbers

Greeks established the deductive method of reasoning whereby conclusions
are derived using previously established results.

At age 18, Pythagoras won a prize for wrestling at the Olympic games.
He studied with Thales, father of Greek mathematics, traveled extensively
in Egypt and was well acquainted with Babylonian mathematics. At age
40, after teaching in Elis and Sparta, he migrated to Magna Graecia, where
the Pythagorean School flourished at Croton in what is now Southern Italy.
The Pythagoreans are best known for their theory of the transmigration of
souls and their belief that numbers constitute the nature of all things. The
Pythagoreans occupied much of their time with mysticism and numerology
and were among the first to depict polygonal numbers as arrangements of
points in regular geometric patterns. In practice, they probably used
pebbles to illustrate the patterns and in doing so derived several funda-
mental properties of polygonal numbers. Unfortunately, it was their obses-
sion with the deification of numbers and collusion with astrologers that
later prompted Saint Augustine to equate mathematicans with those full of
empty prophecies who would willfully sell their souls to the Devil to gain
the advantage.

The most elementary class of polygonal numbers described by the early
Pythagoreans was that of the oblong numbers. The nth oblong number,
denoted by o,, is given by n(n + 1) and represents the number of points in
a rectangular array having n columns and »n + 1 rows. Diagrams for the
first four oblong numbers, 2, 6, 12, and 20, are illustrated in Figure 1.1.

The triangular numbers, 1, 3, 6, 10, 15, ..., ¢,, ..., where ¢, denotes
the nth triangular number, represent the numbers of points used to portray
equilateral triangular patterns as shown in Figure 1.2. In general, from the
sequence of dots in the rows of the triangles in Figure 1.2, it follows that
t,, for n =1, represents successive partial sums of the first » natural
numbers. For example, 74 =1+ 2+ 3 +4 = 10. Since the natural num-
bers are commutative and associative,

ty=142+---+mn—-1)+n

and
° o0 e oo oo 00
® o0 e oo eo 00
o0 e oo eo o0 o0
e oo oo o0
eeo oo

Figure 1.1



1.1 Polygonal numbers 3

Figure 1.2
th=n+m—1)+--+2+1;

adding columnwise, it follows that 2f, =(n+1)+(n+1)+ -

+ (n+ 1) = n(n+ 1). Hence, t, = n(n + 1)/2. Multiplying both sides of
the latter equation by 2, we find that twice a triangular number is an oblong
number. That is, 27, = 0,, for any positive integer n. This result is
illustrated in Figure 1.3 for the case when n=6. Since 2+4 + ---
+2n=214+2+---+n)=2-n(n+1)/2 = n(n+ 1) = o,, the sum of
the first n even numbers equals the nth oblong number.

The square numbers, 1, 4, 9, 16, ..., were represented geometrically by
the Pythagoreans as square arrays of points, as shown in Figure 1.4. In
1225, Leonardo of Pisa, more commonly known as Fibonacci, remarked,
in Liber quadratorum (The Book of Squares) that the nth square number,
denoted by s,, exceeded its predecessor, 5,1, by the sum of the two roots.
That is s, = $,_1 + /Sx + /Sa_1 or, equivalently, n* =(n— 1) + n +
(n — 1). Fibonacci, later associated with the court of Frederick II, Emperor
of the Holy Roman Empire, learned to calculate with Hindu—Arabic

N
l\.\. ® [ ] l
l .\.\. [ J l
l ® .\.\. l
AN
l —_— 0 —0— 0>l

Figure 1.4



4 The intriguing natural numbers

numerals while in Bougie, Algeria, where his father was a customs officer.
He was a direct successor to the Arabic mathematical school and his work
helped popularize the Hindu—Arabic numeral system in Europe. The origin
of Leonardo of Pisa’s sobriquet is a mystery, but according to some
sources, Leonardo was figlio de (son of) Bonacci and thus known to us
patronymically as Fibonacci.

The Pythagoreans realized that the nth square number is the sum of the
first n odd numbers. That is, n* =1 +3+5 +--- + (2n — 1), for any
positive integer n. This property of the natural numbers first appears in
Europe in Fibonacci’s Liber quadratorum and is illustrated in Figure 1.5,
for the case when n = 6.

Another interesting property, known to the early Pythagoreans, appears
in Plutarch’s Platonic Questions. Plutarch, a second century Greek biogra-
pher of noble Greeks and Romans, states that eight times a triangular
number plus one is square. Using modern notation, we have 8¢, + 1 =
8[n(n+1)/2]1+1=2n+ 1)> = 55,,,. In Figure 1.6, the result is illu-
strated for the case n = 3. It is in Plutarch’s biography of Marcellus that we
find one of the few accounts of the death of Archimedes during the siege of
Syracuse, in 212 BC.

Around the second century BC, Hypsicles [HIP sih cleez], author of

Figure 1.5

NSd 17
LN A

Figure 1.6



1.1 Polygonal numbers 5

Book XIV; a supplement to Book XIII of Euclid’s Elements on regular
polyhedra, introduced the term polygonal number to denote those natural
numbers that were oblong, triangular, square, and so forth. Earlier, the
fourth century BC philosopher Plato, continuing the Pythagorean tradition,
founded a school of philosophy near Athens in an area that had been
dedicated to the mythical hero Academus. Plato’s Academy was not
primarily a place for instruction or research, but a center for inquiry,
dialogue, and the pursuit of intellectual pleasure. Plato’s writings contain
numerous mathematical references and classification schemes for numbers.
He firmly believed that a country’s leaders should be well-grounded in
Greek arithmetic, that is, in the abstract properties of numbers rather than
in numerical calculations. Prominently displayed at the Academy was a
maxim to the effect that none should enter (and presumably leave) the
school ignorant of mathematics. The epigram appears on the logo of the
American Mathematical Society. Plato’s Academy lasted for nine centuries
until, along with other pagan schools, it was closed by the Byzantine
Emperor Justinian in 529.

Two significant number theoretic works survive from the early second
century, On Mathematical Matters Useful for Reading Plato by Theon of
Smyrna and Introduction to Arithmetic by Nicomachus [nih COM uh kus]
of Gerasa. Smyrna in Asia Minor, now Izmir in Turkey, is located about 75
kilometers northeast of Samos. Gerasa, now Jerash in Jordan, is situated
about 25 kilometers north of Amman. Both works are philosophical in
nature and were written chiefly to clarify the mathematical principles found
in Plato’s works. In the process, both authors attempt to summarize the
accumulated knowledge of Greek arithmetic and, as a consequence, neither
work is very original. Both treatises contain numerous observations
concerning polygonal numbers; however, each is devoid of any form of
rigorous proofs as found in Euclid. Theon’s goal was to describe the beauty
of the interrelationships between mathematics, music, and astronomy.
Theon’s work contains more topics and was a far superior work mathema-
tically than the /ntroduction, but it was not as popular. Both authors note
that any square number is the sum of two consecutive triangular numbers,
that is, in modern notation, s, = f, + t,_|, for any natural number n > 1.
Theon demonstrates the result geometrically by drawing a line just above
and parallel to the main diagonal of a square array. For example, the case
where n =5 is illustrated in Figure 1.7. Nicomachus notes that if the
square and oblong numbers are written alternately, as shown in Figure 1.8,
and combined in pairs, the triangular numbers are produced. That is, using
modern notation, t, =5, + 0, and ty, | = 5,1 + 0, for any natural
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Table 1.1.

1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10
2 2 4 6 8 10 12 14 16 18 20
3 3 6 9 12 15 18 21 24 27 30
4 4 8 12 16 20 24 28 32 36 40
5 S 10 15 20 25 30 35 40 45 50
6 6 12 18 24 30 36 42 48 54 60
7 7 14 21 28 35 42 49 56 63 70
8 8 16 24 32 40 48 56 64 72 80
9 9 18 27 36 45 54 63 72 81 90
10 10 20 30 40 50 60 70 80 90 100

o 0o o0
Figure 1.7
N 0] $H 0y S3 03 S4 04 S5 05
1 2 4 6 9 12 16 20 25 30
3 6 10 15 21 28 36 45 55
5} 13 l4 Is 13 I I3 Iy o
Figure 1.8

number n. From a standard multiplication table of the first ten natural
numbers, shown in Table 1.1, Nicomachus notices that the major diagonal
is composed of the square numbers and the successive squares s, and s,
are flanked by the oblong numbers o0,,. From this, he deduces two properties
that we express in modern notation as s, + s,.| + 20, = s2,.1 and
Opn_1+ 0, + 25, = 52,.

Nicomachus extends his discussion of square numbers to the higher
dimensional cubic numbers, 1, 8 27, 64, ..., and notes, but does not
establish, a remarkable property of the odd natural numbers and the cubic
numbers illustrated in the triangular array shown in Figure 1.9, namely, that
the sum of the nth row of the array is »’. It may well have been
Nicomachus’s only original contribution to mathematics.



