A.K. Kamrani E. S. A. Nasr *Editors*

Collaborative Engineering

Theory and Practice

F406 C697

Ali K. Kamrani • Emad S. Abouel Nasr Editors

Collaborative Engineering

Theory and Practice

Editors
Ali K. Kamrani
University of Houston
Industrial Engineering Department
E206 Engineering Building 2
Houston, TX 77204-4008

Emad S. Abouel Nasr University of Houston Industrial Engineering Department E206 Engineering Building 2 Houston, TX 77204-4008

ISBN 978-0-387-47319-2

e-ISBN 978-0-387-47321-5

Library of Congress Control Number: 2008930412

© 2008 Springer Science+Business Media, LLC

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

987654321

springer.com

Collaborative Engineering

Father, Teacher and Mentor (1920–2007)

Preface

Large or complex design problems often require specialized knowledge from many different fields. Several designers, each with specific core competencies, interact in the design process. During the conceptual phase of the design life cycle, emphasis is mainly focused on establishing the requirements and their proper interaction. The need for integration continues when the design enters the preliminary and detail design phases. Figure P.1 illustrates the scope of the design process for any complex system.

In the virtual, integrated, concurrent design environment, designers interact by sharing information and reaching agreements. By considering proper integration and interaction from the beginning, the problems with the final integration of activities will be significantly reduced.

The surge of the information technology, especially the Internet, provides the infrastructure necessary for an integrated and distributed engineering environment. In this environment, teams of engineers from different parts of organizations could collaborate together toward design, development, and integration. The virtual product design and integration environment would require the collaboration from different teams and functions involved throughout the product life cycle. This environment would require tools that are used for sharing information and knowledge in order to reach an understanding which would contribute to a design which satisfies the customer needs. This environment also provides the means necessary to share tools that are colocated and geographically dispersed.

The distributed environment is highly heterogeneous, where designers, engineers, resources, and models are distributed and not centralized in one location, and groups within the company work together across the computer network. In this environment, many interrelated design decisions are being made in order to meet the objectives. Functions within companies may include design, manufacturing, cost, and life cycle considerations. A collaborative and integrated environment would provide the necessary insight and tools to the designers to quickly construct and reconstruct models of complex products and to evaluate, optimize, and select the better alternative designs. This distributed design environment facilitates the collaborative development of models and exchange of design information and knowledge.

Collaborative engineering (CE) is the systematic approach to the integrated, concurrent design of products and related processes, including manufacturing, product service, and support. This approach is intended to cause developers to consider

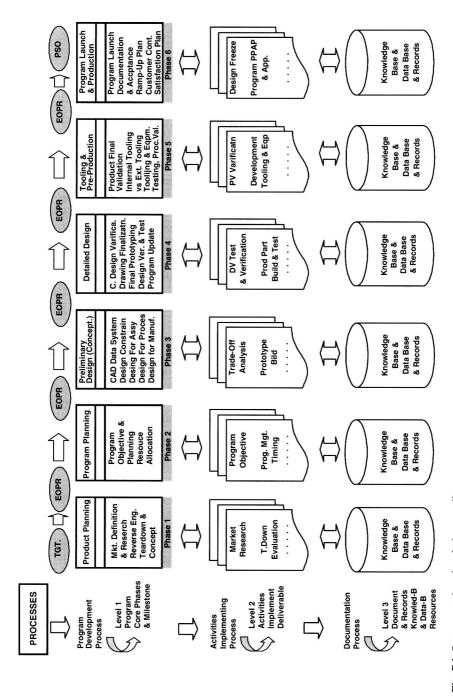


Fig. P.1 Systems engineering design paradigm

Preface ix

all elements of the product life cycle from conception through disposal, including quality, cost, schedule, and user requirements. The objective of CE is to reduce the development cycle time through a better integration of resources, activities, and processes. This book offers insights into the methods and techniques that enable implementing a CE concept on product design by integrating capabilities for intelligent information support and group decision-making utilizing a common enterprise network model and knowledge interface. The book is a collection of the latest applied methods and technology from selected experts in this area. It is developed to serve as a resource for both researcher and practitioners. It offers the following:

- 1. Latest research results in CE.
- 2. Collection of materials from experts in selected topics.
- 3. Applied methods developed in the field of CE.
- 4. CE with the emphasis on product design.
- 5. Discussion on the need and solutions for new engineering paradigm and philosophy required for CE, including the IT infrastructure.
- 6. Principles and applications of the collaborative environment.

In Chap. 1, Kamrani discusses the requirement for an open and collaborative manufacturing environment. Technologies to support product life cycles and suitable methodologies, tools, and techniques will be the focus of this chapter. In Chap. 2, Kamrani and Vijian provide a discussion on template-based integrated product development life cycle. General guideline for design of a template-based system for integrated design is outlined and a case study for design of electrical motor is provided. In Chap. 3, Feng describes the concept of Six Sigma as a methodology to manage process variations that cause defects, defined as unacceptable deviation from the mean or target; and to systematically work toward managing variation to eliminate those defects. Also, statistical methods for quality improvement, such as statistical models, control charts, process capability, process experimentation, model building, and the evaluation of measurement processes, are discussed. Supply chain workflow modeling using ontologies is presented by Chandra in Chap. 4. One of the primary objectives of supply chain information support system is to develop conceptual design of organizational and process knowledge models which facilitate optimal supply chain management. Data mining (DM) as a process of automatically searching large volumes of data for patterns recognitions is presented by Kamrani and Gonzalez in Chap. 5. DM is a fairly recent and contemporary topic in computer science. However, DM applies many computational techniques which are explained in this chapter. A step-by-step methodology for DM is presented in this chapter. Chapter 6 by Nasr and Kamrani provides an overview of intelligent design and manufacturing (CAD/CAM), the most important reasons of using CAD systems in the manufacturing environment, computer-integrated manufacturing (CIM), the implementation of automation in the production organization, the role of CAD/CAM systems in the manufacturing facility, the CAM cycle in a feature-based design environment, and different types of features. Moreover, this chapter provides a methodology for feature analysis and extraction of prismatic parts for CAM applications is developed and presented. This approach

X Preface

aims to achieve the integration between CAD and CAM. Simulation and optimization are clearly two of the most widely implemented operation research and management science techniques in practice, although several obstacles have limited the acceptance and application of integrated simulation and optimization techniques. In Chap. 7, Asiabanpour, Mokhtar, and Houshman provide a discussion of rapid manufacturing as a technique for manufacturing solid objects by the sequential delivery of energy and/or material to specified points in space to produce that solid. Current practice is to control the manufacturing process by computer using a mathematical model created with the aid of a computer. Also, this chapter discusses the large advantage of rapid manufacturing in speed and cost overhead compared to alternative polymer or metal manufacturing techniques such as powder metallurgy manufacturing or die casting. Moreover, in this chapter, rapid manufacturing as an application of solid freeform fabrication for direct manufacturing of goods is addressed. Unlike methods such as computer numerical control (CNC) milling, these techniques allow the fabricated parts to be of high geometric complexity. In Chap. 8, Assavapokee and Mourtada introduce the basic concept of simulationbased optimization and illustrate its usefulness and applicability for generating the manpower planning of airline's cargo service call center. Because of the continuous increase in oil prices, and combined with many other factors, the airline industry is currently facing new challenges to keep its customers satisfied. In this work, reinforcement learning (RL) and Markov decision process (MDP) are utilized to build and solve the mathematical model to determine the appropriate staffing policy at the airline's cargo service call center.

A robot is a mechanical device that sometimes resembles a human and is capable of performing a variety of often complex human tasks on command or by being programmed in advance. Robotics of the years has seen an immense growth both technologically and otherwise. The recent advances in the manufacturing processes have necessitated the need to enable robots to be more autonomous. Autonomy simply means the ability of the robot to be independent, that is, intelligent. It should be understood that the mimicking of human intelligence and neural function is a relatively nascent research area and has significant strides to overcome in order to achieve this. Chapter 9 by Ibekwe and Kamrani discusses topics related to the design of an autonomous robot. Comprehensive discussion of the modular design, including types of modularity, the characteristics of modular systems, and the development of modular and reconfigurable manufacturing systems, is provided in Chap. 10. In this chapter, Salhieh and Kamrani present a new network-based solution methodology for solving the problem of modularity and classification. Complexity within the manufacturing system comes from the variability and uncertainty in the manufacturing system and from the dynamic nature of the manufacturing environment which increases the number of decisions that need to be made with the difficulty to predict the future response (outcomes) of these decisions. The uncertainty reason can be represented by market demand, product life cycle on the macro scale to tool wear, machine/component breakdown on the micro scale. Variability covers the stochastic nature of manufacturing such as operator performance, work material properties, process repeatability, and supply reliability. The basic elements of the complexity are

Preface

the absolute quantity of information, the diversity of the information, and the information content. The ability of a production line to produce a product mix requires shop floor monitoring, and information flow giving the required position of the product and the parts for each stage in the production line. A topic related to complexity within the manufacturing system is presented in Chap. 11 by Kamrani and Adat. A simulation-based methodology is presented in order to mitigate the risks associated with manufacturing complexity. Agile manufacturing systems (AMS) will be considered as the next industrial revolution. They are manufacturing and/or management philosophies that integrate the available technology, people, manufacturing strategies, and management systems. Although agility is the set of capabilities and competences that the manufacturing firms need to thrive and prosper in a continuously changing and unpredictable business environment, measuring the level of agility in these firms is still unexplored according to the capabilities and competences. In Chap. 12, Garbie, Parsaei, and Leep present a new solution methodology for manufacturing cell design and analysis.

I thank all my students and other colleagues who participated in this project. I also thank my student Mr. Henry Ibekwe for assisting me in formatting this book. Without his assistance this project would not have been possible. I also thank Springer Publishing (US) for giving us the opportunity to fulfill this project.

Ali K. Kamrani

List of Authors

Arun Adat

Department of Industrial Engineering, University of Houston, Houston, Texas 77004, USA

Bahram Asiabanpour

Department of Engineering and Technology, Texas State University, San Marcos, Texas 78666, USA

Tiravat Assavapokee, Ph.D.

Assistant Professor, Department of Industrial Engineering, University of Houston, Houston, Texas 77204, USA

Charu Chandra, Ph.D.

Industrial and Manufacturing Systems Engineering Department, University of Michigan, Dearborn, Michigan 48128

Qianmei Feng, Ph.D.

Assistant Professor, Department of Industrial Engineering, University of Houston, Houston, Texas 77004

Ibrahim H. Garbie, Ph.D.

Department of Mechanical Engineering, University of Helwan, Helwan, Cairo, Egypt

Ricardo Gonzalez

Department of Industrial and Manufacturing Systems Engineering, University of Michigan, Dearborn, Michigan 48128

Mahmoud Houshmand

Department of Industrial Engineering, Sharif University of Technology, Tehran, Iran

xvi List of Authors

Henry I. Ibekwe

Department of Industrial Engineering, University of Houston, Houston, Texas 77004, USA

Ali K. Kamrani, Ph.D.

Associate Professor, Department of Industrial Engineering, University of Houston, Houston, Texas 77004

Herman R. Leep, Ph.D.

Department of Industrial Engineering, University of Louisville, Louisville, KY, 40292, USA

Alireza Mokhtar

Department of Industrial Engineering, Sharif University of Technology, Tehran, Iran

Ibrahim Mourtada

Manufacturing Engineer, Cameron Measurement Systems, Houston, Texas, 77032, USA

Emad S. Abouel Nasr, Ph.D.

Mechanical Engineering Department, Faculty of Engineering at Helwan, Helwan University, Helwan, Cairo, Egypt

Hamid R. Parsaei, Ph.D.

Department of Industrial Engineering, University of Houston, Houston, TX, 77204, USA

Sa'Ed M. Salhieh, Ph.D.

Assistant Professor, Department of Industrial Engineering, University of Jordan, Amman, 11942, Jordan

Abhay Vijayan

Department of Industrial Engineering, University of Houston, Houston, Texas 77004

Table of Figures

Fig. 1.1	Integrated and collaborative team environment	3
Fig. 1.2	Design team distributed geographically	5
Fig. 1.3	Sample integrated design model	6
Fig. 1.4	Integration of the I/O modules with the analysis tool	7
Fig. 1.5	Integration of the analysis tool, databases, and the performance	
	analysis tool	7
Fig. 1.6	User interface	9
Fig. 1.7	Data and information flow in the proposed integrated system	10
Fig. 1.8	Graphical integration of components	11
Fig. 1.9	Visual Basic optimization code for gear selection	13
Fig. 1.10	Possible alternatives with expected results	13
Fig. 1.11	IDEAS macro program file for gear parametric model	14
Fig. 1.12	CAD models for the gears and the shafts	15
Fig. 2.1	Basic system schema	21
Fig. 2.2	Shaft classifications	24
Fig. 2.3	System structure	28
Fig. 2.4	Free body diagram	29
Fig. 2.5	Machine selection module	34
Fig. 2.6	User interface for Case Study 2.1	36
Fig. 2.7	Bearings for Case Study 2.1	37
Fig. 2.8	Design template for Case Study 2.1	37
Fig. 2.9	Machine selection and cost estimation for Case Study 2.1	38
Fig. 2.10	User interface for Case Study 2.2	38
Fig. 2.11	Bearings for Case Study 2.2	39
Fig. 2.12	Design template for Case Study 2.2	39
Fig. 2.13	Machine selection and cost estimation for Case Study 2.2	39
Fig. 3.1	A Six Sigma process with 1.5 σ shift	44
Fig. 3.2	Shifting a Six Sigma process and a three-sigma process	45
Fig. 3.3	Why Six Sigma?	46
Fig. 3.4	Six Sigma progress at General Electric (GE)	46
Fig. 3.5	The DMAIC(T) process	50
Fig. 3.6	SIPOC diagram and Six Sigma	51
Fig. 3.7	Focus of Six Sigma	52

Fig. 3.8	Performance improvement by Six Sigma and DFSS	56
Fig. 4.1	Supply chain analysis and modeling conceptual framework	67
Fig. 4.2	Supply chain structure and SCOR processes	68
Fig. 4.3	Ontology engineering conceptual framework	70
Fig. 4.4	Taxonomy of supply chain processes	72
Fig. 4.5	SCOR ontology elements (adapted from SCOR terminology)	73
Fig. 4.6	Data schema for supply chain markup language	79
Fig. 4.7	SCML fragment: axioms	80
Fig. 4.8	Steel processing and shipment supply chain	80
Fig. 4.9	SCOR model for steel shipment and processing supply chain	81
Fig. 4.10	IDEF0 Diagram for the "Schedule Production Activity" Process	82
Fig. 4.11	IDEF0 Diagram for the "Plan Production" Process	82
Fig. 4.12	UML class diagram for schedule production process (M3.2.3)	83
Fig. 4.13	Ontology fragment: axioms	85
Fig. 5.1	Major steps in the data mining process	93
Fig. 6.1	Constructive solid geometry (CSG) representation	105
Fig. 6.2	A boundary representation (B-rep)	106
Fig. 6.3	Structure of the proposed methodology	110
Fig. 6.4	Flowchart of extraction and classification of features	111
Fig. 6.5	Hierarchy of classes and attributes of the designed object	112
Fig. 6.6	Classifications of edges	114
Fig. 6.7	A concave edge example	118
Fig. 6.8	Step through	120
Fig. 6.9	Step through round corner	120
Fig. 6.10	An illustrative example	121
Fig. 7.1	Manufacturing processes tree and RM Position	128
Fig. 7.2	More triangles result in more edges in each layer	132
Fig. 7.3	This error can be estimated as $bc\text{-}cos\ \theta$	132
Fig. 7.4	DXF file data storage format for a 2.5D-object	134
Fig. 7.5	DXF file generation procedure for a 2.5D-object	
	in AutoCAD environment	135
Fig. 7.6	Tool path generation from DXF file	135
Fig. 7.7	Two different tool path configurations for the same CAD Data	136
Fig. 7.8	A surface and its normal vector	136
Fig. 7.9	Three common geometries for tools: 1- flat end,	
	2- b all end, and 3- tip radius	137
Fig. 7.10	Flat end tool	137
Fig. 7.11	Ball end tool	138
Fig. 7.12	Geometry of the tip tadius tool	139
Fig. 7.13	(A) A Meshed CAD object and (B) the position	
	of the object and tool path	139
Fig. 7.14	The two steps of slicing and tool path generation	140
Fig. 7.15	Slicing algorithm steps	141
Fig. 7.16		141
Fig. 7.17	Tool path generation steps	142

Table of Figures xix

Fig. 7.18	The tool path generation algorithm	143
Fig. 7.19	Visualization of models (Up) and slices (Bottom)	144
Fig. 7.20	Visualization of CAD file and the tool path	
	in the AutoCAD environment	144
Fig. 7.21	B-Rep model of a simple cube: faces, edges	
	and vertices depicted in the model	145
Fig. 7.22	Boundary tepresentation of a simple part [40]	146
Fig. 7.23	A typical part to be rapid-Manufactured	146
Fig. 7.24	A piece of a STEP file	147
Fig. 7.25	The SLS analytical simulation interface	149
Fig. 7.26	Software interface for process cost items	149
Fig. 7.27	Process simulation outcomes	150
Fig. 8.1	General framework of sequential decision-making systems	158
Fig. 8.2	General framework of the reinforcement learning algorithm	163
Fig. 8.3	Flowchart of customer calls routing at the CSC	164
Fig. 8.4	An example output of ARENA input analyzer	165
Fig. 9.1	Fanuc Arc-Mate 120-i tobot welding cell.	
	(Courtesy - Burns Machines)	175
Fig. 9.2	Mars rover (Courtesy - NASA)	176
Fig. 9.3	The da Vinci® Surgical System Patient Cart	
	(Courtesy of Intuitive Surgical, Inc.)	177
Fig. 9.4	Robotic-assisted surgery setup	
	(Courtesy of Intuitive Surgical, Inc.)	178
Fig. 9.5	Classes of robots (Courtesy - Niku 2001)	179
Fig. 9.6	Robot work space (Courtesy – US Dept of Labor)	182
Fig. 9.7	Reference and the body-Attached Coordinate System	184
Fig. 9.8	Rotation of the <i>OUVW</i> system about the <i>OX</i> axis	187
Fig. 9.9	Rotation of the <i>OUVW</i> system about the <i>OY</i> axis	188
Fig. 9.10	Rotation of the <i>OUVW</i> system about the <i>OZ</i> axis	188
Fig. 9.11	Link coordinate system and its parameters	
	(Courtesy – Fu et al 1987)	195
Fig. 9.12	A PUMA robot arm with joints and links	
	(Courtesy – Fu et al 1987)	196
Fig. 9.13	Neighborhood connectivity	200
Fig. 9.14	Block scheme of a position-Based visual servoing algorithm	201
TI 40.4	(Lippiello et al 2006)	204
Fig. 10.1	Function and module types	209
Fig. 10.2	Component-swapping modularity	211
Fig. 10.3	Component-sharing modularity	
Fig. 10.4	Fabricate-to-fit modularity	212
Fig. 10.5	Bus modularity	213
Fig. 10.6	Requirements decomposition	215
Fig. 10.7	Ball bearing design constraint–parameter incidence matrix	216
Fig. 10.8	Decomposed constraint–parameter incidence matrix	
Fig. 10.9	Hierarchical decomposition of a complex system	21/

xx Table of Figures

Fig. 10.10	System level specification decomposition hierarchy	221
Fig. 10.11	Graph for a decomposed product	223
Fig. 11.1	Schematic view of the possible combinations of subassemblies	236
Fig. 11.2	Operational sequence and assembly flow	237
Fig. 11.3	Scope of the proposed system	237
Fig. 11.4	Actual and actual production comparison	239
Fig. 11.5	Dynamic measure of complexity for the current scenario	
	for the total built	239
Fig. 11.6	Cost Comparisons between different delivery	
	and inventory policies	240
Fig. 11.7	The proposed cost model for added variety analysis	241
Fig. 11.8	Average daily inventory level of rear axles	242
Fig. 11.9	Average daily inventory level of front axles	243
Fig. 11.10	Average daily inventory level of rear spring coils	243
Fig. 11.11	Average daily inventory level of front spring coils	243
Fig. 11.12	Average daily storage cost for all subassemblies	244
Fig. 11.13	Increase in storage cost with added product variety	244
Fig. 11.14	Average daily inventory storage cost for all subassemblies	245
Fig. 11.15	Average daily inventory holding cost for all subassemblies	245
Fig. 12.1	Strategies in cell formation	
Fig. 12.2	Cell formation techniques	252
Fig. 12.3	Design cell formation process	253
Fig. 12.4	Flow chart of proposed heuristic approach to cell formation	263
Fig. 12.5	Part families arrangement	
Fig. 12.6	Initial formation of manufacturing cells	270
Fig. 12.7	Revised formation of manufacturing cells	270
Fig. 12.8	Addition of a duplicate machine 9 to manufacturing cell 3	271
Fig. 12.9	Addition of a duplicate machine 7 to manufacturing cell 2	272
Fig. 12.10	Addition of a duplicate machine 2 to manufacturing cell 2	273
Fig. 12.11	Addition of five more duplicate machines	273

Contents

Lis	st of Authors	XV
Ta	ble of Figures	xvii
1	Collaborative Design Approach in Product Design and Development	1
2	Template-Based Integrated Design: A Case Study	19
3	Six Sigma: Continuous Improvement Toward Excellence Qianmei Feng	43
4	Supply Chain Workflow Modeling Using Ontologies	61
5	Data-Mining Process Overview	89
6	Intelligent Design and Manufacturing Emad S. Abouel Nasr and Ali K. Kamrani	103
7	Rapid Manufacturing	127
8	Simulation-Based Optimization: A Case Study for Airline's Cargo Service Call Center Tiravat Assavapokee and Ibrahim Mourtada	153