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Preface

Introductory Algebra for College Students provides comprehensive, in-depth cover-
age of the topics required in a one-term course in beginning or introductory algebra.
The book is written for college students who have had no previous experience in
algebra and for those students who need a review of basic algebraic concepts.

The book has three fundamental goals: First, to help students acquire a solid
foundation in the basic skills of algebra; second, to enable students to develop
problem-solving skills, fostering critical thinking, within a varied and interesting
setting; and third, to show students how algebra can be used to solve real-life
problems in numerous disciplines.

Unlike other books at this level, algebra is integrated into the whole spectrum of
learning through a vast collection of historical references, multidisciplinary applica-
tions, enrichment essays, critical thinking exercises, and unique word problems.
Using an interdisciplinary approach that draws from the history of mathematics,
algebra is viewed as both interesting and relevant.

Key Pedagogical Features

The features of this book are designed to support its three fundamental goals.

Detailed Step-by-Step Explanations Students learn a great deal of algebra by
studying examples and working problems. This book makes algebraic skills accessi-
ble by providing numerous illustrative examples that are presented one step at a
time. No steps are omitted, and each step is clearly explained. Detailed explanations
appear to the right of each mathematical step, enabling students to study the exam-
ples and follow the mathematics.

Example Titles All illustrative examples have titles so that students immediately
see the purpose of each example.

Unique Chapter and Section Introductions Each chapter begins with an inter-
disciplinary introduction to stimulate student interest. Chapter introductions cover
such diverse topics as Fibonacci numbers in nature’s designs, uncertainty in mathe-
matics, TOE (the theory of everything), and Nelson Cole’s show-stopping perfor-
mance at the 1903 meeting of the American Mathematical Society. Furthermore,
each section opens with an introduction leading to a statement of specific objectives
that prepare students for the material covered in the section.
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Enrichment Essays Interspersed throughout the book are enrichment essays—
some pictorial—that germinate from ideas appearing in expository sections. Provid-
ing historical information and interdisciplinary connections, topics of some of the
enrichment essays include fractals, relativistic time, friendly numbers, paradoxes,
palindromes, Fermat’s Last Theorem, the aging male voice, inequalities and aerobic
exercise, and the use of art to convey ideas expressed by algebraic formulas. Full-
color photographs, including works by Seurat, Mondrian, Dali, Magritte, Escher,
Melvin Prueitt, and the Chudnovsky brothers, add visual impact to many of the
essays.

Relevant Word Problems Thousands of applied problems from every conceiv-
able discipline show students the most up-to-date real-life applications of algebra.
An index of applications is included inside the front cover. This is intended to
enable students to locate the vast array of realistic, relevant, and unique applications
of algebra discussed throughout the book.

Emphasis on Problem Solving The emphasis of the book is on learning to use the
language of algebra as a tool for solving relevant, real-world problems. Translating
from English phrases to algebraic expressions is taught throughout Chapter 1 and is
utilized in Chapter 2, where a substantial introduction to problem solving is pre-
sented. Chapter 3, devoted entirely to problem solving, has been structured with
flexibility in mind. Other than covering the section on problem solving in geometry,
instructors can select whatever other sections of the chapter they find appropriate.
(Omitting all of Chapter 3 other than the discussion of Euclidean geometry will not
affect the continuity of topics in subsequent chapters.) Word problems and strategies
for solving them are explained and developed throughout the remainder of the book.

Extensive Application to Geometric Problem Solving Many students enter a
beginning algebra course with little or no knowledge of Euclidean geometry. Conse-
quently, this book teaches (rather than reviews) geometric concepts that are impor-
tant to a student’s understanding of algebra. Section 3.3 covers measuring angles,
parallel lines, alternate interior angles, sum of the measures of the interior angles of
a triangle, perimeter, area, and volume. Literacy in geometry is developed through-
out the remainder of the book by the use of extensive applications involving geo-
metric problem solving.

Writing in Mathematics Each problem set contains writing exercises intended to
help students communicate their mathematical knowledge by thinking and writing
about algebraic topics.

Critical Thinking Analytic skills that go beyond the routine application of basic
algebraic concepts are developed in a separate section (Section 3.1) devoted to
critical thinking. Critical thinking exercises requiring students to recognize patterns,
use logical reasoning, think visually, engage in organized counting, and approach
problems creatively appear in many of the problem sets.

Early Graphing and Functions Graphing is introduced in Chapter 4 and applied
throughout the remainder of the book to illustrate the solutions to problems. Chapter
4 also contains an introduction to some basic ideas about functions. Material on
functions is developed and expanded in subsequent chapters.
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Vast Collection of Problems A problem set is included at the end of each section.
This book contains nearly 7000 problems that are intended to provide drill, provoke
critical thinking, develop and enhance problem-solving skills, motivate, amuse, and
illustrate how algebra is used in numerous disciplines. The Instructor’s Manual with
Test Bank contains a list of basic suggested assignments for each problem set. The
flexibility of the problem sets permits instructors to add to the suggested core as-
signments those problems that they find useful and appropriate.

Review Problems Every exercise set concludes with three review problems. A
comprehensive collection of chapter review problems is included at the end of each
chapter. In addition, Chapters 3—9 conclude with cumulative review problems, help-
ing students to continually review topics covered in previous chapters. Cumulative
review problems do not appear at the end of the final chapter, but are included in a
separate Appendix B, which contains a complete set of problems covering all impor-
tant concepts discussed in the entire book.

Calculator Applications Calculator applications for both scientific and graphing
calculators are provided at appropriate places throughout the book. Calculator prob-
lems appear in most of the exercise sets. Although the book recognizes and encour-
ages the use of calculators, coverage of this material is optional.

Screened Boxes Extensive use is made of screened boxes to highlight important
definitions, formulas, rules, and procedures. Procedure boxes clearly state step-by-
step summaries of the processes to be used for solving problems.

Chapter Summaries Inclusive summaries appear at the conclusion of each chap-
ter, helping students to bring together what they have learned after reading the
chapter.

Four-Color Format A four-color system is used to highlight the pedagogical
features of this book. Full-color photographs in the enrichment essays provide stu-
dents with visually interesting material not found in comparable algebra books.

Supplements

The supplement package includes an instructor’s manual, testing materials, solu-
tions manuals, videotapes, and tutorial software.

Instructor’s Manual This manual contains lecture notes for each section in the
book, and a list of suggested minimum assignments for each problem set.

TestPro (IBM and Macintosh) This versatile testing system allows the instructor
to easily create up to 99 versions of a customized test. Users may add their own test
items and edit existing items in WYSIWYG format. Each objective in the text has at
least one multiple-choice and free-response algorithm. Free upon adoption.

Instructor’s Solutions Manual This manual contains worked-out solutions to all
the problems in the book.

Student’s Solutions Manual This manual provides students with detailed solu-
tions to selected odd-numbered problems, all review problems in each exercise set,
all review and cumulative review problems at the end of each chapter, and all
cumulative review problems in Appendix B.
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Videotapes A set of videotapes gives students a chance to review key topics from
each chapter in the book.

Computer-Assisted Tutorials The tutorials offer self-paced, interactive review in
IBM and Macintosh formats.
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To the Student

The process of learning mathematics requires that you do at least three things—read
the book, work problems, and get your questions answered if you are stuck. This
book has been written so that you can learn directly from its pages. All concepts are
carefully explained, important definitions and procedures are set off in boxes, and
worked-out examples that present solutions in a step-by-step manner appear
throughout. A great deal of attention has been given to show you the vast and
unusual applications of algebra in order to make your learning experience both
interesting and relevant. As you begin your studies, I would like to offer some
specific suggestions for using this book and for being successful in algebra.

® Read the book.

a. Begin with the chapter introduction. This will present a particular perspective
from which you can view the entire chapter, making your work in the chapter
more meaningful and enjoyable.

b. Move on to the introduction to a particular section. This will tell you what will
be covered, why this information is significant, and exactly what you should
be able to do once you have completed the section.

c. At a slower and more deliberate pace, read the section. Move through the
illustrative examples with great care. These worked-out examples provide a
model for doing the problems in the exercise sets.

d. Read the enrichment essays that appear throughout the section. Although
omission of these essays will not interfere with learning the subject matter,
they should help make the course more interesting, provide a temporary break
from the more formal mathematics, and enhance your appreciation of algebra.

As you proceed through the reading, do not give up if you do not understand
every single word. Things will become clearer as you read on and see how various
procedures are applied to specific illustrative examples.

e Work problems every day, and check your answers. The way to learn mathemat-
ics is by doing mathematics, which means by solving problems. The more prob-
lems you work, the better you will become at solving problems which, in turn,
will make you a better algebra student.

a. Work the assigned problems in each problem set. The problems in the exercise
sets move from fairly routine to more difficult questions that are intended to
stimulate your ability to think and reason. It is often better to think about a
particular question, even if confused and somewhat frustrated, than to immedi-
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To the Student

ately have someone else show you how to work the problem. The answers to
most of the odd-numbered problems are given in the back of the book. Once
you have completed a problem, be sure to check your answer. If you made an
error, find out what it was. Getting help is a good idea once you have at-
tempted the work on your own.

b. Work the review problems at the end of each problem set. By continuously
reviewing, you will remember the material you learned for a much longer
period of time.

® After completing a chapter, study the chapter summary and work all the chapter
review problems. Unlike the problems that appear in the exercise sets through-
out the chapter, you should be able to do all the chapter review problems (answers
are given in the back of the book). This is a good way to test yourself on whether
you truly understand the objectives of the chapter.

o After completing the book, work the review problems that appear in the cumula-
tive review in Appendix B. This is an effective way to bring together the proce-
dures and problem-solving skills learned throughout the course. By doing this,
you should be ready for a cumulative final examination and to pursue more
advanced mathematics courses. (Your instructor will let you know which prob-
lems you should omit if your course did not include every section in the book.)

® Attend all lectures. No book is intended to be a substitute for the valuable
insights and interactions that occur in the classroom. In addition to arriving for a
lecture on time and prepared, you might find it helpful to read the section that will
be covered in class beforehand so that you have a clear idea of the new material
that will be discussed.

Algebra is often viewed as the foundation for more advanced mathematics. It is
my hope that this book will make algebra accessible, relevant, and an interesting
body of knowledge in and of itself.
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The Real Number
System

and complexity of the compact symbolic lan-

guage used in algebra. Consider, for example,
the following sentence: ‘‘A woman once gave her hus-
band something so offensive that he tossed it into a
trash can and refused to talk about it again, although
she occasionally asks him where it is.”” If we use letters
to represent the unknowns, the sentence becomes: ‘‘x
gave x’s husband y a z, and y found z so offensive that y
' tossed z into a trash can and refused to talk about z to x,
although x occasionally asks y where z is.”” This second
form of the sentence replaces the variable pronouns
with letters, but also contains English words.

Until the 13th century, all algebraic formulas and
equations were written out in verbal sentences. Later,
abbreviations replaced some of the words. Algebra’s
current notation, originating near the beginning of the
17th century with the work of the French mathemati-
cian René Descartes, utilizes coinpact symbols without
the use of words. In this notation, variables such as x
represent any number, with every number condensed
into one all-embracing symbol. Using modern notation,
mathematicians write x”, where n is an exponent, a
symbol attached to a symbol that condenses all re-
peated multiplications for all numbers into one compact
space.

T he English language contains all the abstraction

The symbolic notation used in algebra is the result of
a slow and tedious evolution of ideas and symbols. It
wasn’t until the late 16th century that the French math-
ematician Frangois Viéte came upon the idea of using
letters such as x, y, and z to represent numbers in much
the same way that English pronouns represent nouns.

The problem that many people experience with alge-
bra is not that it is abstract, but rather that its xs, ys, and
zs seem too often ungrounded and meaningless. The
real issue is to discover what lies beyond the symbolic
notation and how the notation reflects a meaningful
description of the world in which we live.

The use of algebra to solve problems and describe
our world in a significant way is the primary focus of
this book. In our first chapter, we look at the real num-
bers, establishing procedures for adding, subtracting,
multiplying, and dividing positive and negative num-
bers. This will lead to the use of compact symbolic
formulas that describe phenomena as diverse as percep-
tions of being underpaid at work, bowlers’ handicaps,
life expectancy, blood pressure, learning and memory,
and the cost of cleaning up chemical contamination. An
understanding of the basic ideas underlying the real
numbers will enable us to use algebra’s unique sym-
bolic language not only to describe the world, but also
to solve some of its problems.




2 Chapter 1

The Real Number System

SECTION 1.1 THE REAL NUMBERS

Numbers and their properties have intrigued humankind since the beginning of
civilization. Pythagoras discovered that harmony in music was the result of ratios of
whole numbers, and he developed a philosophy of the universe based on these
ratios. There is a harmony in nature, he said, and it has a language—numbers are the
language of nature.

The transition from counting specific things to the abstract concept of a number
represents a long, slow cultural evolution. As mathematician and philosopher Bert-
rand Russell wrote, ‘It must have required many ages to discover that a brace of
pheasants and a couple of days were both instances of the number 2.”

We begin our study of algebra by looking at numbers, in particular the real
numbers. After completing this section, you should be able to:

Use the roster method to write sets of numbers expressed in set-builder notation.

Use the symbols € and €.

Define the sets that make up the real numbers.

. Classify given numbers as belonging to one or more of the sets that make up the
real numbers.

5. Understand and use inequality symbols.

6. Find the opposite (additive inverse) and the absolute value of a given real

number.

BN

Set Notation

In this section, we consider the sets that make up the real numbers. The term set
appears extensively in mathematics.

The roster method of writing a set encloses the elements of the set in braces, { }.
For example, the set of numbers used for counting that are less than 6 is written
{1, 2, 3, 4, 5}. This set has a limited number of elements and is an example of a finite
set.

To express the fact that 4 is an element of the set {1, 2, 3, 4, 5}, we use the
symbol €.

EXAMPLE 1 Set Notation and the Symbol €

Given the set {1, 2, 3, 4, 5}, each statement listed below is true.
2€{1,2,3,4,5} 2 is an element of the set.
4€{1,2,3,4,5} 4 is an element of the set.
7€{1,2,3,4,5} 7 is not an element of the set. =



Section 1.1 The Real Numbers 3

In algebra, letters, called variables, are used to represent numbers. Variables are
used to express sets in set-builder notation. The set {1, 2, 3,4, 5} can be written
using this notation as

{x|x is a counting number between 1 and 5 inclusively}

which is read ‘the set of all elements x such that x is a counting number between 1
and 5 inclusively.”” (The word inclusively includes both 1 and 5 as elements of the
set.)

EXAMPLE 2 Representing Sets Using Two Notations

Table 1.1 represents sets in both set-builder and roster notations. The sets in each
row are equal because they contain the same elements.

TABLE 1.1 SETS IN SET-BUILDER AND ROSTER NOTATIONS
et o R e B L ke N e T = e e S e

Set-Builder Notation Roster Method
{x[x is an even number between 2, inclusively, and 10,

exclusively} {2,4,6, 8}

{x|x is a counting number less than 8} {1,2,3,4,5,6,7}
{x|x is a counting number greater than 8} {9,10,11,12,13,.. }

Observe that the last set in Table 1.1 contains an unlimited number of elements
and is an example of an infinite set. The three dots indicate that the pattern contin-
ues; the dots are read ‘‘and so on.”” There are infinitely many counting numbers that
are greater than 8, so the set {9, 10, 11, 12, 13, .. .} also contains the numbers 14,
15, 16, and so on. [ |

The Set of Real Numbers

We are now in a position to define the various kinds of sets that make up the set of
real numbers.

When a child learns to talk, the names of the first few counting numbers are
almost as essential to an emerging vocabulary as mommy, dog, and bird. Counting is
followed by words for numbers, which, in turn, are followed by symbolic notation
for numbers. It should come as no surprise that the first kinds of numbers children
are introduced to are the natural numbers. They can find ‘‘models’’ in external
reality for these abstractions—one thing, two things, three things, and so on. Our
primeval ancestors must have had a parallel experience.

Our early mathematical experience with subtraction imposed a very strange idea
on us. Many of us can remember our first-grade teacher showing us three things,
then removing them and saying, ‘‘Now what do you see? Nothing.”” But can we,



