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IN MEMORIAM

I would like to mention, with all the sadness possible,
the memory of my wife Cornelia, which disappeared meantime,
and which helped me always so much.



Preface

The present book is not simply a new addition of the book Dynamic Plasticity,
initially published in 1967, a long time ago. Certainly this edition is not only a new
version, containing the essential of the old book and what has been done meantime.
Why again Dynamic Plasticity? Well because very many books published meantime
on the subject are not mentioning the waves which are to be considered in Dynamic
Plasticity. Also, generally, the plastic waves are slower than the elastic one. Thus,
when considering a simple problem of propagation of waves in thin bars, for any
loading at the end, the plastic waves are reached by the elastic ones, and will not
propagate any more. Only a part of the bar is deforming plastically. Examples of
this kind are very few.

I thought that this new version is too restrictive for the today students which
know little of static plasticity, differential equations, dynamic elastic—plastic prop-
erties, etc. Therefore, I thought to write a simpler book, containing the main
concepts of dynamic plasticity, but also something else. Thus I thought that this
new version would contain the elementary concepts of static plasticity, etc., which
would be useful to give. Also it would be good to give other problems, not di-
rectly related to dynamic plasticity. Thus I started with some classical problems on
static plasticity, but only the simplest things, so that the readers would afterwards
understand also the dynamic problems. Also, since in dynamic problems the soils
and rocks played a fundamental role, I thought to write a chapter on rocks and soils.
Then were expressed several chapters about dynamic plasticity, as propagation of
elastic—plastic waves in thin bars, the rate influence and the propagation of waves
in flexible strings. It is good to remember here that all problems related to dynamic
problems, are to be considered using the mechanics of the wave propagation; with-
out the wave propagation mechanics all results concerning constitutive equations,
rate effect, etc. are only informative. Such problems are mentioned however in the
book. We have presented mainly the different aspects on constitutive equations of
materials, as resulting from dynamic problems. Rate effects are considered in this
way. They have been used by a variety of authors. The same with the mechanics of
flexible strings, presented afterwards. Not very many authors have considered till
now the mechanics of deformable cables.
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viii Dynamic Plasticity

Therefore I thought to write a very simple book, which can be read by the
students themselves, without any additional help. They can understand what
“plasticity” is after all. Then several other problems have been presented. Not
trying to remove the fundamentals, I have thought also to add some additional
problems, which are in fact dynamic, though the inertia effect is disregarded. They
are the stationary problems, quite often met in many applications. It is question
obviously, about problems involving Bingham bodies, as wire drawing, floating with
working plug, extrusion, stability of natural inclined plane, etc.

Further I have considered various problems of plastic waves, using various
theories. Also the perforation problems, was presented, using various symmetry
assumptions, or any other assumption made.

The last chapter is on hypervelocity impact. To keep it simple, I have given
only very few information about. Thus I wished to show what hypervelocity is and
how is it considered now.

Though the book is a very simple one, I wished to ask any author to disregard
possible missing of some papers. All literature is certainly incomplete. One has
done today much more than given here. It was impossible for me to mention “all”
authors in this field.

N. D. Cristescu
cristescQufl.edu
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Introduction

Theory of Plasticity studies the distribution of stresses and particle velocities (or
displacements) in a plastically (irreversible) deformed body, when are known the
external factors which have acted upon him and the history of variation of these
factors. The theory was applied to metals to describe working processes both at
cold (drawing, rolling, etc.) and warm (extrusion, forging, etc.), to describe term
behavior (high and law) involving also temperatures, to short term behavior, to
describe impact, shocks, perforation, etc. It was applied to geomaterials, as soils,
rocks, sands, clays, etc., with the description of civil engineering applications as
tunnels, wells, excavations of all sorts, etc. It was applied to other materials as
concrete, asphalt, ceramics, ice, powder-like materials, various pastes, slurries, etc.

In the classical sense the Plasticity Theory is time independent. However a time
dependent theory was also developed and called Viscoplasticity. Besides Rheology
deals with any flow or deformation in which time is the main parameter.

From the point of view of formulation of problems, in plasticity one considers in
some of the problems, as in elasticity, that the strains are small; whoever in some
other problems the consideration of the problems are as in nonlinear fluid mechanics
when the strain are finite.

1 Diagnostic Tests

These are the slow tests in compression or in tension (¢ < 1072 571, say) so as the
strain is uniform along the specimen. We denote by
apK=£; and by Uc=%
the Piola-Kirchhoff and the Cauchy’s stresses. Here F' is the total force applied
axially to the specimen, and A the current area, and by Ay the initial area of the
cross section of the specimen.
We also denote by

-1

EH=lni and by e, =
lo

lo



2 Dynamic Plasticity

A Stress 0
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P

Fig. 1 Typical diagram of a diagnostic test.

the Henchy’s strain or the Cauchy’s strain. Here again [ is the length of the working
area of the specimen, and lo is the initial length of the same area. As a sign
convention, o > 0 in tension for metals, but it is a reverse convention for rocks
and soils (see Fig. 1). op is the proportionally limit of the specimen where we
apply the Hooke's law o = Fe with E the Young’s modulus which is constant, and
independent on the loading rate and on the loading history. Up to op we apply the
Hooke’s law in both loading und unloading. ¢y is a conventional or offset yield limit
defined by the permanent ey, generally 0.1% = 0.5% of the total strain. Essentially
is that ey is defined by a convention. Thus for € < ey the unloading is perfectly
elastic without hysteresis loop, as

og=0q9+ E(c—eq).
Thus we assume small strains and
e=eP &P,
In elasticity we apply the Hooke’s law written as
o =Cleg] or 0i; =Cijktn

where C is a fourth order tensor. We apply this law during loading and unloading
and the natural reference configuration is the stress-free strain-free state. If we
introduce the two deviators by:
tro tre
o/=0—-—-—1 and &' =¢e¢- —1,
3 3

the Hooke’s law can be written

o' =2Ge’ and tro =3Ktre,
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Fig. 2 Nonlinear elastic curve.

AO'
A
2]
F
B/ C
o*
0 i >
< & —PpeciPp

__> AgP ‘._

Fig. 3 Stress work per unit volume.

where G and K are the two elastic constants. The above relations are applied for
any elastic isotropic body.

There are nonlinear elastic bodies as for instance rubber (see Fig. 2). The stress—
strain curve is nonlinear but reversible. The unloading is according to some other
law, exhibiting a significant hysteresis loop. We cannot describe this behavior by
the Hooke’s law but with a nonlinear law, giving a one-to-one correspondence. Since
the material remembers his initial configuration, the reference configuration is the
initial one.

For dissipative materials as the plastic ones, we can define an irreversible stress
work per unit volume by:

W(T) = /0 " )P (0) ds.
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Gt

Fig. 4 Lack of one-to-one correspondence.

o

0 Z £
Fig. 5 Linear work-hardening.

That is shown in Fig. 3; it is the total irreversible area under the curve. The
remaining area is the potential energy of deformation reversible for the reversible
elastic materials (conservative).

In order to define work-hardening, we start with the Fig. 3. In a loading loop
BAEDC producing the irreversible strain Ae? and returning to the same stress o™,
we define by:

(0 — 0")Ae? > 0 irreversibility,
AcAe® > 0 stability .

These two conditions are known as the Drucker’s postulate and are used to define
the plastic work-hardening.

Another postulate is due to Iliushin’s; it says that the loading—unloading FAEDF
must be positive.

In plasticity there is no one-to-one stress—strain correspondence. That is very
clear in Fig. 4. The loading history must be known; to a single stress correspond
several strains. Plasticity starts with unloading, as compared with nonlinear elastic
behavior; and with the plastic strains which can develop only if ¢ > oy.

The linear work-hardening is defined by two straight lines (Fig. 5):

o= FEe if o <oy,
0=G'Y+E1(€—€y) if o >o0y.

Here F; is the constant work-hardening parameter, and F; < E.
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¢cr

Fig. 6 Various hardening laws.

If the stress is increasing very slowly, in the so-called “soft” machines, one is
observing some steps on the stress—strain curve. It is question of the so-called
Savart—-Masson effect, later rediscovered by Portevin—Le Chatelier effect. It was
shown that this effect can by described by a rate-type constitutive equation (Suliciu
[1981]). The viscosity coefficient has strong variation in some regions of the ¢, o
plane that lie above the equilibrium curve.

For most materials, if o is on a plastic state, then —o is also on the plastic
state. As it is well known, there are a lot of materials which do not satisfy this
condition. For rocks for instance, if oy; is the yield stress in tension, then oy, is
in compression, and |oy.| > |oy:|. That is also for concrete, cast iron, soils, glass,
powders, etc. That is called Bauschinger effect, discovered in 1886. In Fig. 6 it is
along BCK, that is the segment 20y stays more or less constant during loading.

For metals the elastic domain has a constant size 20y during loading. If during
unloading we follow BCGM then the hardening is said to be isotropic. If during un-
loading we follow the path BCK we say that the hardening is kinematic. Generally,
if the yield stress in one direction is diminished by a previous plastic deformation in
the opposite direction we have a Bauschingr effect. It introduces anisotropy, sough
it can be removed by annealing at high temperature. If we do a loading in a single
direction, we cannot distinguish between the two hardening.

2 Tests Performed at Long and Short Term Intervals

If dz is a material element in current configuration, and dX in the initial config-
uration, we call A = dz/dX elongation. The rate of elongation is D = A/A (= é
sometimes).
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local increase of € (dynamic)

O =const. creep

& = const.

stress relaxation

£
0 >
Fig. 7 Effect of change of rate of elongation.
Table 1 Variation of &.
€ < 10—20 g1 slow tectonic motion,
1078871 >¢> 1071251  creep tests,
1074 s 1>¢>10"1s~1 testing machines,
g~1s?t haramer drop, _
g~10s1 the strain is not uniform, wave propagation is needed,
é~10% s~ metal drawing, air gun bullet,
&~ 104 g1 high speed impact, ballistics,
e~ 10851 107 g1 high speed drawing of very fine wires, or very fast tests.

The change of rate of deformation is shown in Fig. 7. An increase of ¢ is raising
the curves. But this raise in technically limited by the machine we have. For an
additional increase, we need dynamic curves, with an local increase of &. This
increase is done by elastic waves propagating with the velocity ¢p = \/E/p. A table
of approximate increase of ¢ is given in Table 1. This is a very approximate table
of variation of €. For constant stress we have creep, but for constant strain we have
stress relazation. Any other intermediate variation of the strain rate is possible.
For |¢| — oo we have very fast variation of the strain rate, impossible to realize
practically.

In order to have a representation we take into account that mainly the plastic
properties are influenced by the change of the rate of strain (see Fig. 8). A rela-
tionship was proposed by Ludwik from 1909, and is of the kind shown on Fig. 8.
Thus we have for a fixed strain:

P
£

or=cry+0'01n€,—P and o >0y >0
0
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£,> 6

é] >é0

Oy I~ . &y

Y = » £

Fig. 8 Influence of the strain rate on the stress—strain curve.

with g9 = constant. If the elastic strains are disregarded, the stress—strain curves
are
g — 0y
£ = 3n
0 if0<o <oy,

ifU)O’y,

where ¢ — oy is the overstress. oy is the yield stress for a conventional small
€ obtained in very slow performed tests, when flow starts being possible. 7 is a
viscosity coefficient; if two tests are performed with the strain rates £; and €2 we
have: ‘
J2 — 01
In=--—,
=g e 1
to determine 7. If 5 is constant for any strain rates, the relation is linear, ctherwise
nonlinear. Since in this relation there is no strain, the reference configuration is the
actual one. '
For work-hardening materials (Malvern):
o—fle) .
—2 if o0 > f(e),
0 if0<eo < fle).

The reference configuration is the initial one or a relative one, corresponding to the
state when the test started (for geomaterials, for instance).

Let as give several examples. In Fig. 9 is given the stress—strain curves for schist.
One can see that the influence of the strain rate is felt from the beginning. The hole
curve is influenced, not only the plastic part. Also, the last points correspond to
failure. Thus with an increase of loading rate the stress at failure is increased, while
the strain at failure is decreased. Thus a theory of failure expressing in stresses
only, would not work. :

In order to see that the influence of the strain rate is not always to be seen always
on the stress—strain curves. In Fig. 10 are given the curves for granite, obtained in



