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PREFACE TO THE SECOND EDITION

In the tén years since this book was published in English, there has been important
progress in a number of tpics related to its subject. Were this book 10 be written anew,
its title could be Algebraic Varieties close to the Rational Ones. Algebra, Geometry,
‘Arithmetic. In fact, this class of varieties has crystallized as a natural domain for the
methods developed and expounded in Cubic Forms.

In this edition the original text is left intact, except for  few corrections, but an
Appendix is added together with a list of references to original papers, mainly of the last
This Appendix sketches some of the most essential new results, constructions and
ideas, including the solutions of the Liiroth and Zariski probl'ems, the theory of the
descent and obstructions to the Hasse principle on rational varieties, and recent -
applications of K-theory to arithmetic. Proofs arz omitted since their complete
presentation would demaﬂd a new book. Meanwhile, this modest report will hopefully
* be of use.

1am deeply indebted to V E. Voskresenski and M. A. Tsfasman for their help in.
preparing this second edition.

Moscow,” 1984. o - : Yu. I. Manin



INSTRUCTIONS TO THE READER

1. The first sections of all chapters can be read consecutively, independent-~,
ly of the remaining text. These sections contain a survey of the main concepts
and results of the book, as well as some motivation and examples.

2. Interdependence table of the chapters:

1

|
Il

*“"'-

VI

(Dashed arrows indicate a weak dependence.)
3. Some standard notation:
Z — the integers,
Q - the rational numbers,
R — the real numbers,
C — the complex numbers,
Qp — the field of p-adic numbers,
Z, — the cyclic group of order n.
4. The list of references, the author index, a list of the most frequently
occurring symbols, and the subject index can be found at the end of the book.
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INTRODUCTION

0.1. Every mathematician who is not indifferent to number theory has
felt the charm of Fermat’s theorem on the sum of two squares of natural
numbers. A psychologist of the Jungian school would probably think that
such diophantine problems are archetypal to a high degree.

The basic idea for the book presented here arose from an attempt to find
out what happens in the case of sums of three rational cubes. Needless to say,
the result is not nearly so simple, fundamental and complete as the classical
pattern. The author has generalized the problem along all the lines which oc-
curred to him, and has used all technical resources known to him. He obtained
as a regult the multitude of non-associative composition laws, monoidal
transformations and Galois cohomologies which make up this book.

0.2. The problem of the sum of three cubes has a respectable history. The
basic result by the classical mathematicians is the following (see Dickson [1]):

Theorem. Every rational number is a sum of three rutional cubes.

First proof (Ryley (1825); Richmond (1930)):

3 3 3
F‘( r - 3 ) +(—a3+3sa+36) +( ¥a’ +3% )
3222+3%+ 38 322+ 3%+ 38 322 +3%+ 36
his proof is simple, but not too illuminating. It would be nice to know what
es behind this identity.

Second proof: After having added an extra coordinate 7|y, we can write the
‘equation in homogeneous form:

NS [ U W
aT0+T1+T2+T3-0.



2% INTRODUCTION

This is the equation of 4 smooth cubic surface V in a three-dimensional projec-
tive space. There are ‘trivial® rational points on this surface, e.g. (0,0, 1, —1).
Unfortunately these lie in the plane at infinity and do not give a solution to
our oiiginal problem. However, rational points on a cubic surface can be multi-
plied, that is, we can construct new ones, starting from known points.

The first idea. Let x € V be some rational point. Construct the tangent plane
to V at x and let us denote by C(x) its intersection with V.

‘Generally speaking’, C(x) is an irreducible cubic curve in this plane with x
as a double point. Through x we draw all the lines in rational directions which
are tangent to V. Each of these lines must intersect the cubic curve C(x) in three
points (counting multiplicities); but the intersection at x has multiplicity two,
which leaves only one point. The coordinates of this point are necessarily ra-
tional. In fact, the coordinates of the intersection points in terms of the pa- °
rameters of the equations of the line are the roots of a cubic equation with
rational coefficients. This equation has a double rational root, corresponding
to x; therefore the third 1oot is also rational. After this one can apply the
same procedure to the rational points of the curve C(x) and so on.

Unfortunately, for x = (0, 0, 1, —1) the curve C(x) consists of three lines
which are conjugate over Q, and there are no rational points on it except for x.:

The second idea. In this case we draw a line in an arbitrary rational airection.
We only take care that the two other points of intersection of this line with ¥,
say y and ¥, do not coincide and that the curves C(y) and C(7) are ‘good’ as
described above.

Then the.previous argument on cubic polynomials shows that y, y are defined
and conjugate over some quadratic extension K of the field of rational num-
bers Q. (It can happen by accident that y, ¥ even have rational coordinates,
but then the problem is solved.)

As above, we construct ‘many’ points on C (‘ ») with coordinates in K. Take
one of those points, say z, construct its conjugate Z, and draw the line through
z and Z. Because z and Z are conjugate, we can assume that the coefficients
of the parameter equation of this line are rational. The third (besides z and Z)
of its intersection points with ¥, which we denote by z o Z, then also has ra-
tional coordinates (by the same argument on cubic polynomials).

Of course, if we start with z =y, we simply return to v o ¥ = x, but it is not
difficult 1o show that other pointsz € C(y) give many néw rational points in- -
cluding points whieh do not lie in the plane at ipﬁnily. '

!
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0.3. Although the second proof is considerably longer than the ﬁ}st it con-
tams, in.embryo form mterestmg posmbxhtnes for estabhshmg approaches to-
wards getting a review of all solutlons of the equatlon instead of giving.only
an existence proof.

Multlplylng points by means of C'(x) glves an mﬁmle family of solutions
of our diophantine equation. These solutions depend on as many independent
parafneters as desired (the directions of the lines which occur in the construction).
Can all solutions be covered by a finite number of such families? How many -
parameters are sufficient for this?

The composmon lawx o y is not defined everywhere (e.g., what is x o x?);
all the same it permits us to obtain new solutions from old ones. IS it possible,
by combining this composition with the construction of points on C(x), to
obtain all sotutions out of a finite number of them? .
0.4. A positive answer to the latter question is known; not for cubic surfaces,
. but only for cubic curves (without singular points), 'say aT8‘+ T? +'T% =0,
This is the famous Mordell-Weil theorem on elliptic curves. The algebra, geom-
etry and arithmetic of cubic curves (one could add aha]ysis, e.g. theta functions)
constitute a vast and actively developing field; see the survey ot Cassels [3]
in the list of references. ' s

The natural more-dimensional éeneralizations of elliptic curves, however,
are the Abelian varieties (and homogeneous spaces over them) and in general
not the cubic (hyper)surfaces. Nevertheless, it turns out that over non-closed
fields (in particular over number fields), there is a whole series of results from
the theory of elliptic curves which admit non-trivial analogues in the theory of
cubic surfaces. (Sometimes the statement of the theorem carries over almost
verbatim, although the mechanics of the proofs in dimension 2 have nothing
in common with the one-dimensional case; see Section 33.)

Three fundamental parallels follow.

0.5. (a) The composition law xy =u o (x o y) (u fixed) on an elliptic curve
turns its set of points into an Abelian group. (As above, the point x o y is de-
fined by the property that x, y, x o y are on one line.) On a cubic surface one
can divide the set of points into classes such that these classes can be composed
in a unique way by means of lines through representatives..After this the com-
position law XY = Uo (X ¢ Y) turns the set of classes £ into an ‘almost’ Abelian
group of exponent six. ‘Almost’ because this composition can apparently be
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non-associative. A slightly weaker associativity condition than the usual one,
which can be successfully proved, defines on £ the structure of a ‘commutative
Moufang locp’. This structure is studied in Chapter I of this book, and the com-
position of classes of points in Chapter I1.

(b) The translations by means of a rational point generate almost all of
the group of birational maps of an elliptic curve into itself (more precisely,
they generate a subgroup of finite index). In the two-dimensional case, the
translation by x defines analogously a birational map ¢, : v x o v of a surface
into itself. These maps (and similar ones connected with quadratic extensions
of the base field) alsg generate a subgroup of finite index in the group of all
birational maps of V into itself; in any case, if V is minimal. The proof (with
substantial specifications) is contained in Chapter V.

(c) An algorithm for settling the question of whether theie are rational
points on a given plane elliptic curve has up till now not been found. The
first necessary condition is that there exist points ‘everywhere locally’. This
being fulfilled, there is the second necessary condition that the so-called
Cassels—Tate form becomes zero. In Chapter VI it will be shown that the
second condition admits a quite general formulation, which is in particular
applicable to cubic surfaces. There we also obtain (rather restricted) results on
the qu:.tic1s formulated in section 0.3. They give lower estimates for the nec-
essary number of parameters and for the number of generators of the set of
points.

These three subjects also represent, respectively, algebra, geometry and
arithmetic. Analysis and topology could essentially complete the picture.

For instance, starting with dimension 3, the ‘intermediate Jacobians’ of
A. Weil appear. In a less traditional directior we can expect that the group
generated by the maps ¢, has interesting ergodic properties. All this is not
touched upon in this book.

0.6. A part of the results expounded here has been taken from the journal

literature, old and new (including papers of the author). Another part is pub-
. lished here for the first time, for example the discussion on yniversal equiva-

lence in Chapter Il and almost all calculations of Chapter VI.

Mainly classical material is contained in Chapter IV, where the geometry
of the famous configuration uf the 27 lines and its generalisations and applica-
tions are studied. Chapter III presents the necessary preparatory information
on birational maps. ]

Theggquired algebraic—geometric background of the reader increases mono-
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tonically with the numbers of the chapters. In Chapter i, in general no algebraic
geometry is required. To understand Chapter II, it suffices if the reader is
familiar with the lectures of Safarevi¢ [2] (by no means to its fullest extent).
Chapters ITI-V require the mastery of approximately half of Mumford’s book
[2], if the reader is willing to take a series of thearems on trust. Finally in
Chapter VI already the ghosts of étale cohomology faintly stir. To understand
it, it is also necessary to have some acquaintance with class field theory (struc-
ture of the Brauer group for local and global fields).

I.R. Safarevi¢ taught me the algebraic—geometric approach to number
theory. Around ten years ago he drew my attention to cubic surfaces. He
conjectured, in particular, that some non-associative structure must play a
role in the description of the set of rational points. When these structures
started to appear, I was assisted in dealing with them by B B. Venkov, A.L
Kostrikin and V.A. Belousov. The talks with V.A. Iskovskih on the Brauer
group have been very useful to me. Some of the results of Chapter 11 are due
to A. Bel'skii; he has also been of considerable assistance in preparing the
manuscript for printing. The identification of the root systems R, in Chap-
ter IV has been done by means of a method communicated to me by P. Deligne
in a private letter. To all these persons I am deeply indebted.

The papers of Grothendieck [2], Segre [3] and Chatelet [1] have most of
all influenced the formation of the new ideas of this treatise.

Moscow, 1969 —1970 Yu. I. Manin



CHAPTER 1

CH-QUASIGROUPS AND MOUFANG LOOPS

First Scene:

An open place. 77mnde‘r and lightning.
Enter three witches.

Shakespeare. Macbeth, Act 1

1. A survey of definitions and results

In this chapter we introduce and study some algebraic structures which -
emerge in the theory of cubic hypersurfaces. The first section contains a sur-
vey of those results which have immediate applications ir that theory. I
strongly recommend to restrict oneself at first to this survey and to go on
directly to the second chapter, returning to the first when necessary. Here
we give the exact definitions, state the theorems and give some motivation;
the proofs are contained in the next sections.

Definition 1.1. A set E with a binary composition law EX E—~ E: (x, y)
> x = y is called a symmerric quasigroup if it satisfies one of the following
" equivalent conditions: .

(i) The three-place relation L (x. y, z) : X o y = z is invariant under all per-
mutations of x, y, z.

(ii) The following identities hold for.all x, y € E:
Xoy=ycx, (I.1)
xo(xop)=y. (1.2)

The equivalence can be verified immediately.
The followira geometric example may serve as background and motivation
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for this definition: let £ be the set of non-singular points of an irreducible
“cubic curve ¥, embedded in a projective plane over a field k; and lét the rela-
tion L{x, y, z) be ‘the cycle x + y + z is the intersection of ¥ with some line’
(counting multiplicities). Here condition (i) is geometrically obvious but con-
dition (ii) is easier to work with algebraically.

In this example the quasigroup E satisfies the following additional prop-
erty: let u € E be some fixed element; we introduce on £ the new composition
lawxy =u o (x o y). Then E becomes an Abelian group with u ds unit element.
As the structure of Abelian groups is well known, one usually prefers to work
with this (new) composition law.

An axiomatization of this situation leads to the following:

Deﬁmtlon 1.2. A symmetric quasigroup £ is called Abelian if it satisfies
oné of the following equivalent conditions: '
(i) There exists an Abelian group structure on E with composition law
(x, y)*>xp, and there is an element ¢ € E such that x o y = cx—1y=! for all
x,y EE. .
(ii) For any element u € E the composition law xy = u o (x o y) turns E into
an Abelian group. »

The equivalence of conditions (i) and (ii) will be verified in the next section.

Let us now consider an irreducible cubic hypersurface ¥ of dimension > 2
embedded in some projective space; let £ be the set of non-singular points. The
three-place relation L(x, y, z) on V is defined as before in the case of a cubic
curve. It is symmetric. However, in general, it does not come from a binary
composition law on V. This has to do with two geometric circumstances:

(a) When dim V = 1, the point x « x is defined as ‘the third intersection
point with ¥ of the tangent line to ¥ at x’. But, when dim V' > 1, there are
many tangent lines at x: they fill up a whole tangent hyperplane.

(b) When dim V> 1, there can be lines completely lying in V. For two
points on such a line it is impossible to find a third such that the set of these
three forms the whole intersection cycle with some line.

In the next chapter we shall avoid these difficulties by considering instead
of E a quotient set of £ such that the induced relation of ‘collinearity’ comes
from a symmetric quasigroup composition law. We cannot guarantee that this
quasigroup will be Abelian, as in the one-dimensional case, However, any three
points of ¥ are contained in the intersection of ¥ with a plane. This intersec-
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tion is a cubic curve. Hence, as the lines through these points and the points
derived from them all stay in this plane, we obtain the result that any set of
three elements of the quasigroup generates an Abelian quasigroup.

This justifies the following definition:

Definition 1.3. A CH-quasigroup (CH stands for Cubic Hypersurface) is
a symmetric quasigroup in which any three elements generate an Abelian sub-
quasigroup.

We shall now state the main known results on the structure of CH -quasi-
groups.

Let £ be a CH-quasigroup. By analogy with the Abelian case we intro-
duce on £ a new composition law xy =u o (x ¢ y), where u is some fixed ele-
ment. It is a remarkable fact that the structure thus obtained has been intro-
duced before in non-associative algebra theory, and has been thoroughly
studied by Bruck [2].

Definition 1.4. A set £ with composition law (x, y)+ xy is called a commu-
tative Moufang loap (henceforth abbreviated CML) if it satisfies the following
axioms:

(i) Commutativity: xy = yx foralix, y €E. '

(ii) Unit element: ux = x forallx EE,

(iiii) Inverses: there exists a map £ = E: x = x~1 such that x~1(xy) = y

forzllx, y EE.

(iv) Weak associativity:

for three factors:  x(xy) =x2y; (1.3)
for four factors: (xy) (xz) =x2(yz), . (14)
x(y(xz)) =@%p)z. (L5)

Theorem 1.5. If E is a CH-quasigroup, then the composition law
xy =uo(xoy)turns E into a CML.

The axioms for a CML, as introduced in Definition 1.4, are not indepen™
dent. For example, it is possible to deduce (I.3), (1.4) and (I.5) from either
(1.4) or (1.5) alone. We have included these identities because they immedi-



