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Abstract Neutron spin echo spectroscopy (NSE) provides the unique opportunity to unravel
the molecular dynamics of polymer chains in space and time, covering most of the relevant
length and time scales. This article reviews in a comprehensive form recent advances in the
application of NSE to problems in polymer physics and describes in terms of examples
expected future trends. The review commences with a description of NSE covering both the
generic longitudinal field set-up as well as the resonance technique. Then, NSE results for
homopolymers chains are presented, covering all length scales from the very local secondary
B-relaxation to large scale reptation. This overview is the core of the review. Thereafter the
dynamics of more complex systems is addressed. Starting from polymer blends, diblock
copolymers, gels, micelles, stars and dendrimers, rubbery electrolytes and biological macro-
molecules are discussed. Wherever possible the review relates the NSE findings to the results
of other techniques, in particular emphasizing computer simulations.

Keywords Neutron spin echo spectroscopy - Polymer dynamics - Reptation -
Glassy relaxation
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1
Introduction

Among the experimental techniques for studying the structure and dynamics
of polymers, neutron scattering plays a unique role for several reasons:

i. The suitability of the length and time scales. These are accessed in particu-
lar by small angle neutron scattering (SANS) and neutron spin echo (NSE)
and allow the exploration of large scale properties - for instance the con-
formation of a large macromolecule, its diffusion in the embedding medium
and its entropy driven dynamics - as well as features characteristic for more
local scales, e.g. the inter- and intrachain correlations in a glass-forming
polymer and their time evolution, the rotational motion of methyl groups,
the vibrations and so on.

ii. By variation of the contrast between the structural units or molecular groups,
complex systems may be selectively studied. In particular, the large contrast
achieved by isotopic substitution of hydrogen - one of the main components
of polymers - by deuterium constitutes the most powerful tool for deci-
phering complex structures and dynamic processes in these materials.

iii. Neutron reflectometry constitutes a unique technique for the investigation
of surfaces and interfaces in polymeric systems.

iv. The high penetration of neutrons in matter allows the study of the influence
of external fields, e.g. shear or pressure or the evolution of the system under
processing conditions.

v. The space-time resolution of these techniques reveals the molecular mo-
tions leading to the viscoelastic and mechanical properties of polymeric
systems. This knowledge is of great importance for scientific reasons and
is also a basis for the design of tailor-made materials.

The unique power of neutron scattering for revealing essential features in the
field of polymer science can be exemplified by two pioneering experiments that
can already be considered as “classic”. The first is the experimental proof of the
random coil conformation of polymer chains in the melt or in the glassy state,
as proposed in the 1950s by Flory [1]. Its confirmation was only possible in
the 1970s [2] with the development of SANS. Since in the bulk a given macro-
molecule is surrounded by identical units, Flory’s proposition could only be
demonstrated by using contrast variation and deuterating single molecules.
This measurement of a single chain form factor by SANS was one of the first
applications of neutron scattering to polymer science. Its dynamic counterpart
could only be realized 25 years later. Neutron spin echo investigations on
the long time chain dynamics recently allowed the confirmation of de Gennes’
predictions [3] on the mechanism of tube-like confinement and reptation in
polymer melts and dense systems [4].

In this review we will concentrate on the dynamic aspects of the polymer
ensemble and describe as comprehensively as possible what has been achieved
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Fig. 1.1 Development of the number of NSE-related articles in 3-year periods from now to
the invention of the method

so far by neutron spin echo spectroscopy. The last major review in this field
appeared in 1997 [5]. Since then, a strong growth of publications on NSE results
may be observed (Fig. 1.1). This figure displays the total number of publications
on neutron spin echo results in three years intervals. It is evident that during
recent years the publication rate on NSE results has increased dramatically. This
increase is due to two reasons. First, apparently more and more scientists are
discovering the power of NSE for facilitating the observation of slow dynam-
ics in condensed matter, and, second, the number of NSE instruments available
for public use has increased significantly over the last 10 years. Table 2.1 in
Chap. 2 gives an overview on the NSE spectrometers that are available today for
neutron users at user facilities worldwide. The table includes e-mail addresses
to provide the reader access to information on these instruments.

Dynamic processes in polymers occur over a wide range of length and time
scales(see Fig. 1.2 and Fig. 1.3). Figure 1.2 relates the dynamic modulus as it
may be observed on a polymer melt with the length and time scales of molec-
ular motion underlying the rheological behaviour. Our example deals with an
amorphous polymer system excluding any crystallization processes. A typical
relaxation map for this kind of systems is that displayed in Fig. 1.3 for the
archetypal polymer polyisoprene. It is clear that we can distinguish several
different regimes:
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Fig. 1.2 Richness of dynamic modulus in a bulk polymer and its molecular origin. The
associated length scales vary from the typical bond length (=4) at low temperatures to inter-
chain distances (=10 A) around the glass transition. In the plateau regime of the modulus
typical scales involve distances between “entanglements” of the order of 50-100 A. In the flow
regime the relevant length scale is determined by the proper chain dimensions
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Fig. 1.3 Relaxation map of polyisoprene: results from dielectric spectroscopy (inverse of
maximum loss frequency full symbols), rheological shift factors (solid line) [7], and neu-
tron scattering: pair correlation (((Q=1.44 A-1)) empty square) [8] and self correlation
({((Q=0.88 A-1)) empty circle) [9], methyl group rotation (empty triangle) [10]. The shadowed
area indicates the time scales corresponding to the so-called fast dynamics [11]
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ii.

iii.

iv.

At low temperature the material is in the glassy state and only small ampli-
tude motions like vibrations, short range rotations or secondary relaxations
are possible. Below the glass transition temperature T, the secondary S-re-
laxation as observed by dielectric spectroscopy and the methyl group rota-
tions may be observed. In addition, at high frequencies the vibrational dy-
namics, in particular the so called Boson peak, characterizes the dynamic
behaviour of amorphous polyisoprene. The secondary relaxations cause the
first small step in the dynamic modulus of such a polymer system.

At the glass transition temperature T, the primary relaxation (a-relaxation)
becomes active allowing the system to flow. The temperature dependence of
its characteristic relaxation time is displayed in Fig. 1.3 combining dielectric,
rheological and neutron scattering experiments. The time range over which
this relaxation takes place easily covers more than ten orders of magnitude.
This implies the necessity to combine different experimental techniques to
fully characterize this process. As shall be demonstrated in this review, the
length scale associated with a-relaxation is the typical interchain distance
between two polymer chains. In the dynamic modulus, the a-relaxation
causes a significant step of typically three orders of magnitude in strength.
The following rubbery plateau in the modulus relates to large scale motions
within a polymer chain. Two aspects stand out. The first is the entropy-dri-
ven relaxation of fluctuations out of equilibrium. Secondly, these relaxations
are limited by confinement effects caused by the mutually interpenetrating
chains. This confinement is modelled most successfully in terms of the rep-
tation model by de Gennes [3] and Doi and Edwards [6]. There, the con-
finement effects are described in terms of a tube following the coarse
grained chain profile. Motion is only allowed along the tube profile leading
to the reptation process - the snake-like motion of a polymer chain.
When a chain has lost the memory of its initial state, rubbery flow sets in.
The associated characteristic relaxation time is displayed in Fig. 1.3 in terms
of the “normal mode” (polyisoprene displays an electric dipole moment in
the direction of the chain) and thus dielectric spectroscopy is able to mea-
sure the relaxation of the end-to-end vector of a given chain. The rubbery
flow passes over to liquid flow, which is characterized by the translational
diffusion coefficient of the chain. Depending on the molecular weight, the
characteristic length scales from the motion of a single bond to the overall
chain diffusion may cover about three orders of magnitude, while the asso-
ciated time scales easily may be stretched over ten or more orders.

In this review we will present the outcome of NSE studies on polymer systems
covering results beyond those reported in an earlier review in Advances in
Polymer Science [5] eight years ago. Table 1.1 shows the chemical structure
and information on the chain dimensions of the systems considered here. In
Chap. 2 we will commence with a brief description of neutron scattering prin-
ciples and a discussion of the two different ways neutron spin echo may be
implemented - the traditional NSE approach with precession coils and the neu-
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Table 1.1 Names, acronyms and structure of the repeat unit of the polymers that appear in
this work. The ratio between the average end-to-end distance (R2), and the molecular weight
M at 413 K is also shown [12]

Common Acronym Structure of the repeat unit (R?)y/M
name (A2mol/g)
Poly- PI [-CH,-CH=C(CH,)-CH,-], 0.625
isoprene

Poly- PDMS [-Si(CH,),~0-1, 0.457
dimethyl

siloxane

Poly- PE [-CH,-CH,-], 1.21°
ethylene

Poly(ethyl ~ PEE [-CH-CH,-], 0.507
ethylene) CH,-CH,

Poly- PEP [~CH,~CH,-CH(CH,)-CH,-], 0.834
(ethylene

propylene)®

1,4-Poly- PB [-CH,~CH=CH-CH,-], 0.876
butadiene

Polyiso- PIB [-CH,-C(CH,),-1, 0.570
butylene

Atactic aPP [-CH(CH;)-CH,-1, 0.670
poly-

propylene

Poly- PU (I?HZ—CH3

urethane HO([-CH-CH,-0],-C~[0-CH,~CH-],0H

[0-CH,-CH-],0H

Poly(vinyl PVC [-CH,-CCIH-],

chloride

Poly(vinyl ~ PVE [-CH-CH,-], 0.664¢
ethylene) CH=CH,

Poly(vinyl PVME 0-CH;,

methyl !

ether) [-CH,~CH],

Polyethyl- PEMS CIIIZ—CH3

methyl- [-Si(CH;)-0-],

siloxane

Poly- PEO [-CH,-CH,-0-], 0.805
(ethylene

oxide)




