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Series Preface

The Applied and Numerical Harmonic Analysis (ANHA) book series aims to provide
the engineering, mathematical, and scientific communities with significant develop-
ments in harmonic analysis, ranging from abstract harmonic analysis to basic appli-
cations. The title of the series reflects the importance of applications and numerical
implementation, but richness and relevance of applications and implementation de-
pend fundamentally on the structure and depth of theoretical underpinnings. Thus,
from our point of view, the interleaving of theory and applications and their creative
symbiotic evolution is axiomatic.

Harmonic analysis is a wellspring of ideas and applicability that has flourished,
developed, and deepened over time within many disciplines and by means of cre-
ative cross-fertilization with diverse areas. The intricate and fundamental relationship
between harmonic analysis and fields such as signal processing, partial differential
equations (PDEs), and image processing is reflected in our state of the art ANHA
series.

Our vision of modern harmonic analysis includes mathematical areas such as
wavelet theory, Banach algebras, classical Fourier analysis, time-frequency analysis,
and fractal geometry, as well as the diverse topics that impinge on them.

For example, wavelet theory can be considered an appropriate tool to deal with
some basic problems in digital signal processing, speech and image processing, geo-
physics, pattern recognition, biomedical engineering, and turbulence. These areas
implement the latest technology from sampling methods on surfaces to fast algo-
rithms and computer vision methods. The underlying mathematics of wavelet theory
depends not only on classical Fourier analysis, but also on ideas from abstract har-
monic analysis, including von Neumann algebras and the affine group. This leads
to a study of the Heisenberg group and its relationship to Gabor systems, and of
the metaplectic group for a meaningful interaction of signal decomposition methods.
The unifying influence of wavelet theory in the aforementioned topics illustrates the
justification for providing a means for centralizing and disseminating information
from the broader, but still focused, area of harmonic analysis. This will be a key role
of ANHA. We intend to publish with the scope and interaction that such a host of
issues demands.
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Along with our commitment to publish mathematically significant works at the
frontiers of harmonic analysis, we have a comparably strong commitment to publish
major advances in the following applicable topics in which harmonic analysis plays
a substantial role:

Antenna theory Prediction theory
Biomedical signal processing Radar applications
Digital signal processing Sampling theory
Fast algorithms Spectral estimation
Gabor theory and applications Speech processing
Image processing Time-frequency and time-scale analysis
Numerical partial differential equations Wavelet theory

The above point of view for the ANHA book series is inspired by the history of
Fourier analysis itself, whose tentacles reach into so many fields.

In the last two centuries Fourier analysis has had a major impact on the devel-
opment of mathematics, on the understanding of many engineering and scientific
phenomena, and on the solution of some of the most important problems in mathe-
matics and the sciences. Historically, Fourier series were developed in the analysis
of some of the classical PDEs of mathematical physics; these series were used to
solve such equations. In order to understand Fourier series and the kinds of solutions
they could represent, some of the most basic notions of analysis were defined, e.g.,
the concept of “function.” Since the coefficients of Fourier series are integrals, it is
no surprise that Riemann integrals were conceived to deal with uniqueness proper-
ties of trigonometric series. Cantor’s set theory was also developed because of such
uniqueness questions.

A basic problem in Fourier analysis is to show how complicated phenomena,
such as sound waves, can be described in terms of elementary harmonics. There are
two aspects of this problem: first, to find, or even define properly, the harmonics or
spectrum of a given phenomenon, e.g., the spectroscopy problem in optics; second,
to determine which phenomena can be constructed from given classes of harmonics,
as done, for example, by the mechanical synthesizers in tidal analysis.

Fourier analysis is also the natural setting for many other problems in engineer-
ing, mathematics, and the sciences. For example, Wiener’s Tauberian theorem in
Fourier analysis not only characterizes the behavior of the prime numbers, but also
provides the proper notion of spectrum for phenomena such as white light; this latter
process leads to the Fourier analysis associated with correlation functions in filter-
ing and prediction problems, and these problems, in turn, deal naturally with Hardy
spaces in the theory of complex variables.

Nowadays, some of the theory of PDEs has given way to the study of Fourier
integral operators. Problems in antenna theory are studied in terms of unimodular
trigonometric polynomials. Applications of Fourier analysis abound in signal pro-
cessing, whether with the Fast Fourier transform (FFT), or filter design, or the adap-
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tive modeling inherent in time-frequency-scale methods such as wavelet theory. The
coherent states of mathematical physics are translated and modulated Fourier trans-
forms, and these are used, in conjunction with the uncertainty principle, for dealing
with signal reconstruction in communications theory. We are back to the raison d’étre
of the ANHA series!

John J. Benedetto
Series Editor
University of Maryland
College Park



Prologue

John J. Benedetto*

Like a feather caught in a vortex Williams ran around the square of bases at
the center of our beseeching screaming. ... Gods do not answer letters.

— John Updike, The New Yorker, 1960

Claude Elwood Shannon was born on April 30, 1916 and died on February 22,2001.
It is not hyperbole to say that Shannon was a genius and the creator of modern in-
formation theory. Hardy relegated Archimedes, Newton, and Gauss to the “Brad-
man class”, named after the Australian cricket batsman, Sir Donald Bradman (1908-
2001). Shannon, whose mathematics graduate studies and professorship (after 1958)
at MIT placed him diagonally across the Charles River from Fenway Park, has the
ineffable distinction of being in my “Ted Williams class”.

We celebrated Shannon’s accomplishments in May 2001 at the biennial Sampling
Theory and Applications (SampTAOQ1) Conference, held in Orlando, Florida and ex-
pertly organized by my co-editor of this volume, Ahmed Zayed. The volume itself
is the product of wistful impulsiveness as the conference ended with a perceived
insufficient paper trail.

Shannon’s name is sometimes associated with the first two words in our title:
Shannon sampling and Shannon wavelet. I feel this is unfair to Shannon and mis-
leading to the reader. To explain this sentiment, recall that the Classical Sampling
Theorem is

f@ =T f(T)s@ —nT). (1)
neZl

This formula is true, uniformly on R and in L2(R)-norm, for functions f in the
Paley-Wiener space of Q2-bandlimited functions, where 2TQ2 < 1, and where the

* The author gratefully acknowledges support from NSF DMS Grant 0139759 and ONR
Grant N000140210398.
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sampling function s is a 1/(27)-bandlimited function satisfying some natural prop-
erties. In the special case that 27Q2 = 1 and that the Fourier transform of s equals
1 on [—2, ], equation (1) is sometimes referred to as the Shannon sampling for-
mula and it gives rise to the so-called Shannon wavelet orthonormal basis (ONB) for
L2(R). In this latter case, the wavelet decomposition of functions f € L2(R) that
are not $2-bandlimited provides an interpretation of aliasing error.

Using Lagrange interpolation, Cauchy proved the Classical Sampling Theorem
in 1827 and 1841. It was used by Borel, Hadamard, and de la Vallée-Poussin in the
late 19th century. Of course, Hadamard and de la Vallée-Poussin proved the prime
number theorem (PNT) in 1896; so it should also be mentioned that in 1894 von Koch
constructed functions by means of a discrete version of (1) in his attempt to prove
the PNT. Later, equation (1) played a prominent role in Steffensen’s major work in
Acta Mathematica in 1914. So the Classical Sampling Theorem was a venerable tool
in interpolation theory and analytic number theory before E. T. Whittaker’s (1915),
Kotel’nikov’s (1933), and Shannon’s (1949) versions of (1).

There are several proofs of the Classical Sampling Theorem, and they are all el-
ementary. In 1949, in his paper dealing with sampling, Shannon references the proof
in J. M. Whittaker’s book (1935). What is certainly true is that Shannon was instru-
mental in popularizing (1) in the engineering community. Shannon himself wrote in
the late 1940s that the sampling theorem “has been given previously in other forms by
mathematicians but in spite of its evident importance seems not to have appeared in
the literature of communication theory”. My only quibble would be that the formula
he invokes to quantify his sampling theorem is in fact precisely the “19th century
equation (1)” for the special case 272 = 1.

When I wrote above that it was unfair to Shannon to refer to (1) as the Shannon
sampling formula, I meant, tongue-in-cheek, that someone of Shannon’s virtuosity
should not be known for a result whose original luster from an earlier mathematical
era had long since been assimilated into various mathematical toolboxes. (This is
analogous to the Dirac é-function, which is neither a function nor discovered by
the dazzingly deep Dirac.) Similarly, Shannon had nothing to do with wavelets; and
the Shannon wavelet ONB is just as easily, and more accurately, called the sinc or
Littlewood-Paley wavelet ONB.

Notwithstanding my grousing about origins, it is still natural to ask where Shan-
non used the special case of equation (1) in which 2TQ = 1.

In his monumental, A Mathematical Theory of Communication (1948) (“A”
changed to “The” in the 1949 book version), Shannon expressed his indebtedness
to Norbert Wiener (1942 classified, 1949) for establishing the “basic philosophy
and theory” of communication theory, and for formulating communication theory
as a statistical problem. In this latter regard, Shannon was also greatly influenced by
R. V. L. Hartley (1928), who formulated communication problems in terms of “rate
of communication” and “capacity of a system to transmit information”.

As such, Shannon’s model of the communication process involved the follow-
ing well-known concepts: messages as samples of a stochastic process governed by
an a priori distribution (Wiener); received signals subject to errors governed by a
stochastic process — noise (the common man); and the use of a logarithmic measure,
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e.g., Boltzmann'’s entropy, to quantify the size of a “universe of messages” (Hartley).
On the other hand, the effectiveness of modern information theory is a consequence
of Shannon’s significant developments on this last point, where he introduced aver-
age conditional entropy as a measure of information transfer, and of his concepts of
channel and channel capacity.

It may be reassuring to mere mortals that “Shannon’s original paper was re-
viewed, somewhat dismissively, in Mathematical Reviews” (Brockway McMillan at
the Wiener Centenary Conference organized by Pesi Masani and his Sancho Panza).
In any case, in order to find an expression for channel capacity C in the case of
continuous channels, i.e., continuous time ideal strictly bandlimited white Gaussian
channels, Shannon required the Classical Sampling Theorem for 272 = 1. There
are still open and important problems in this area, but Shannon’s computation of C
began with (1) in order to show the equivalence of such continuous channels with
discrete time channels sampled at twice the bandwidth.

Shannon was aware of Gabor’s Theory of communication (1946), see Shannon’s
Communication in the presence of noise in Proceedings IRE 37 (1949), 10-21 (the
first version was submitted in 1940). Gabor’s research is a basis of the theory of
Gabor frames, which, in turn, plays a significant role in modern sampling theory.
Gabor’s analysis (1965) of the roles of Shannon and Wiener in communication the-
ory was first published in the Proceedings of the Symposia in Applied Mathemat-
ics 52 (1997), which is the proceedings of the aforementioned Wiener Centenary
Conference. Gabor’s ideas, coupled with the advent of wavelet theory, have added
unimaginable scope to classical sampling theory and applications developed through
the first three fourths of the 20th century, see the Introduction of Fundamental Pa-
pers in Wavelet Theory (Princeton University Press, 2004). The SampTA tradition
emerged from this setting.

The first SampTA conference did not occur until 1997 with SampTA97 in Jur-
mala, Latvia; and then there was SampTA99 in Aveiro, Portugal, SampTAO1 in Or-
lando, and SampTAO3 in Strobl, Austria. The topics of these conferences, along with
many of the transcendent ideas of harmonic analysis, are the subject of Birkhduser’s
Applied and Numerical Harmonic Analysis (ANHA) book series, of which this vol-
ume is now a member.

In the present era of mathematical engineering we are all beneficiaries of Birk-
hauser’s enlightened support of harmonic analysis, and, in particular, of its publica-
tion of the ANHA series. Ann Kostant of Birkhduser has the élan and incomparable
editorial breadth and depth to keep us sanguine for publishing opportunities at the
highest level. For this volume, Tom Grasso of Birkhduser has suffered our delays,
eccentricities, and impositions with patience, and extraordinary skill and profession-
alism; and we truly appreciate his expert guidance.

The first chapter of this volume was written by my co-editor, Ahmed Zayed. It
is a beautiful and broad exposition of the main themes of the book, as well as an
integrated introduction to the remaining chapters. It also presents a clear and concise
background for appreciating the scientific triptych that follows. Enjoy!

College Park, MD
October, 2003
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