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Preface

This book grew out of the lecture notes for a course on “Elliptic
Curves, Modular Forms and L-functions” that the author taught at
an undergraduate summer school as part of the 2009 Park City Mathe-
matics Institute. These notes are an introductory survey of the theory
of elliptic curves, modular forms and their L-functions, with an em-
phasis on examples rather than proofs. The main goal is to provide
the reader with a big picture of the surprising connections among
these three types of mathematical objects, which are seemingly so
distinct. In that vein, one of the themes of the book is to explain
the statement of the modularity theorem (Theorem 5.4.6), previously
known as the Taniyama-Shimura-Weil conjecture (Conjecture 5.4.5).
In order to underscore the importance of the modularity theorem, we
also discuss in some detail one of its most renowned consequences:
Fermat’s last theorem (Example 1.1.5 and Section 5.5).

It would be impossible to give the proofs of the main theorems
on elliptic curves and modular forms in one single course, and the
proofs would be outside the scope of the undergraduate curriculum.
However, the definitions, the statements of the main theorems and
their corollaries can be easily understood by students with some stan-
dard undergraduate background (calculus, linear algebra, elementary
number theory and a first course in abstract algebra). Proofs that are
accessible to a student are left to the reader and proposed as exercises
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xii Preface

at the end of each chapter. The reader should be warned, though,
that there are multiple references to mathematical objects and results
that we will not have enough space to discuss in full, and the student
will have to take these items on faith (we will provide references to
other texts, however, for those students who wish to deepen their
understanding). Some other objects and theorems are mentioned in
previous chapters but only explained fully in later chapters. To avoid
any confusion, we always try to clarify in the text which objects or
results the student should take on faith, which ones we expect the stu-
dent to be familiar with, and which will be explained in later chapters
(by providing references to later sections of the book).

The book begins with some motivating problems, such as the
congruent number problem, Fermat’s last theorem, and the represen-
tations of integers as sums of squares. Chapter 2 is a survey of the
algebraic theory of elliptic curves. In Section 2.9, we give a proof
of the weak Mordell-Weil theorem for elliptic curves with rational 2-
torsion and explain the method of 2-descent. The goal of Chapter
3 is to motivate the connection between elliptic curves and modular
forms. To that end, we discuss complex lattices, tori, modular curves
and how these objects relate to elliptic curves over the complex num-
bers. Chapter 4 introduces the spaces of modular forms for SL(2, Z)
and other congruence subgroups (e.g., I'o(N)). In Chapter 5 we define
the L-functions attached to elliptic curves and modular forms. We
briefly discuss the Birch and Swinnerton-Dyer conjecture and other
related conjectures. Finally, in Section 5.4, we justify the statement
of the original conjecture of Taniyama-Shimura-Weil (which we usu-
ally refer to as the modularity theorem, since it was proved in 1999);
i.e., we explain the surprising connection between elliptic curves and
certain modular forms, and justify which modular forms correspond
to elliptic curves.

In order to make this book as self-contained as possible, I have
also included five appendices with concise introductions to topics that
some students may not have encountered in their classes yet. Appen-
dix A is a quick reference guide to two popular software packages:
PARI and Sage. Throughout the book, we strongly recommend that
the reader tries to find examples and do calculations using one of these
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two packages. Appendix B is a brief summary of complex analysis.
Due to space limitations we only include definitions, a few exam-
ples, and a list of the main theorems in complex analysis; for a full
treatment see [Ahl79|, for instance. In Appendix C we introduce
the projective line and the projective plane. The p-adic integers and
the p-adic numbers are treated in Appendix D (for a complete refer-
ence, see [Gou97|). Finally, in Appendix E we list infinite families
of elliptic curves over Q, one family for each of the possible torsion
subgroups over Q.

I would like to emphasize once again that this book is, by no
means, a thorough treatment of elliptic curves and modular forms.
The theory is far too vast to be covered in one single volume, and the
proofs are far too technical for an undergraduate student. Therefore,
the humble goals of this text are to provide a big picture of the vast and
fast-growing theory, and to be an “advertisement” for undergraduates
of these very active and exciting areas of number theory. The author’s
only hope is that, after reading this text, students will feel compelled
to study elliptic curves and modular forms in depth, and in all their
full glory.

There are many excellent references that I would recommend to
the students, and that I have frequently consulted in the preparation
of this book:

(1) There are not that many books on these subjects at the
undergraduate level. However, Silverman and Tate’s book
[SiT92] is an excellent introduction to elliptic curves for
undergraduates. Washington’s book [Was08] is also acces-
sible for undergraduates and emphasizes the cryptography
applications of elliptic curves. Stein’s book [Ste08] also has
an interesting chapter on elliptic curves.

(2) There are several graduate-level texts on elliptic curves. Sil-
verman’s book [Sil86] is the standard reference, but Milne’s
[Mil06] is also an excellent introduction to the theory of el-
liptic curves (and also includes a chapter on modular forms).
Before reading Silverman or Milne, the reader would benefit
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from studying some algebraic geometry and algebraic num-
ber theory. (Milne’s book does not require as much algebraic
geometry as Silverman’s.)

The theory of modular forms and L-functions is definitely
a graduate topic, and the reader will need a strong back-
ground in algebra to understand all the fine details. Dia-
mond and Shurman’s book [DS05| contains a neat, modern
and thorough account of the theory of modular forms (in-
cluding much information about the modularity theorem).
Koblitz’s book [Kob93]| is also a very nice introduction to
the theory of elliptic curves and modular forms (and includes
a lot of information about the congruent number problem).
Chapter 5 in Milne’s book [Mil06] contains a good, concise
overview of the subject. Serre’s little book [Ser77] is always
worth reading and also contains an introduction to modular
forms. Miyake’s book [Miy086] is a very useful reference.

Finally, if the reader is interested in computations, we rec-
ommend Cremona’s [Cre97] or Stein’s [Ste07] book. If the
reader wants to play with fundamental domains of modular
curves, try Helena Verrill’s applet [Ver05].

I would like to thank the organizers of the undergraduate summer

school at PCMI, Aaron Bertram and Andrew Bernoff, for giving me
the opportunity to lecture in such an exciting program. Also, I would
like to thank Ander Steele and Aaron Wood for numerous corrections
and comments of an early draft. Last, but not least, I would like to
express my gratitude to Keith Conrad, David Pollack and William
Stein, whose abundant comments and suggestions have improved this
manuscript much more than it would be safe to admit.

Alvaro Lozano-Robledo
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Chapter 1

Introduction

Notation:
N ={1,2,3,...} is the set of natural numbers.
Z={..,-3,-2,-1,0,1,2,3,...} is the ring of integers.
Q={%:m,n € Z,n # 0} is the field of rational numbers.
R is the field of real numbers.
C=1{a+bi:abeR, i*=—1} is the field of complex numbers.

In this chapter, we introduce elliptic curves, modular forms and L-
functions through examples that motivate the definitions.

1.1. Elliptic curves

For the time being, we define an elliptic curve to be any equation of
the form

y? =23 +ax® + bz +c

with a,b, ¢ € Z and such that the polynomial 2% + az? + bz + ¢ does
not have repeated roots. See Section 2.2 for a precise definition.

Example 1.1.1. Are there three consecutive integers whose product
is a perfect square?

There are some trivial examples that involve the number zero, for
example, 0,1 and 2, whose product equals 0-1-2 = 0 = 02, a square.

1



2 1. Introduction

Are there any non-trivial examples? If we try to assign variables to
our problem, we see that we are trying to find solutions to

(1.1) Y =x(z+ 1)(x +2)

with z,y € Z and y # 0. Equation (1.1) defines an elliptic curve. It
turns out that there are no integral solutions other than the trivial
ones (see Exercise 1.4.1). Are there rational solutions, i.e., are there
solutions with z,y € Q7 This is a more delicate question, but the
answer is still no (we will prove it in Example 2.7.6). Here is a similar
question, with a very different answer:

o Are there three integers that differ by 5, i.e., x, * + 5 and
x + 10, and whose product is a perfect square?

In this case, we are trying to find solutions to y? = z(z+5)(z+10)
with z,y € Z. As in the previous example, there are trivial solutions
(those which involve 0) but in this case, there are non-trivial solutions
as well:

(=9)-(=9+5)-(-9+10)=(-9)-(-4)-1=36 = 6°
40 - (40 + 5) - (40 4+ 10) = 40 - 45 - 50 = 90000 = 300°.

Moreover, there are also rational solutions, which are far from obvious:
5 5 5 752
(3)G+35) (o) = (5)
50 50 50 100\?
(%) (-5+5) (-F+v) = (%)

and, in fact, there are infinitely many rational solutions! Here are

some of the z-coordinates that work:

z——9. 40 5 —50 961 7200 12005 16810 27910089 ‘
U479 71447 9617 1681 7 2401 7 5094049

In Sections 2.9 and 2.10 we will explain a method to find rational

points on elliptic curves and, in Exercise 2.12.23, the reader will cal-

culate all the rational points of y? = x(x + 5)(x + 10). [

Example 1.1.2 (The Congruent Number Problem). We say that
n > 1 is a congruent number if there exists a right triangle whose
sides are rational numbers and whose area equals n. What natural
numbers are congruent?



1.1. Elliptic curves 3

For instance, the number 6 is congruent, because the right triangle
with sides of length (a,b,c) = (3,4,5) has area equal to 3—;3 = 6.
Similarly, the number 30 is the area of the right triangle with sides
(5,12,13); thus, 30 is a congruent number.

41/6
3/2

Area =5

20/3

Figure 1. A right triangle of area 5 and rational sides.

The number 5 is congruent but there is no right triangle with
integer sides and area equal to 5. However, our definition allowed
rational sides, and the triangle with sides (3,2, 41) has area exactly
5. We do not allow, however, triangles with irrational sides even if
the area is an integer. For example, the right triangle (1,2,+/5) has
area 1, but that does not imply that 1 is a congruent number (in fact,

1 is not a congruent number, as we shall see below).

The congruent number problem is one of the oldest open problems
in number theory. For more than a millennium, mathematicians have
attempted to provide a characterization of all congruent numbers.
The oldest written record of the problem dates back to the early
Middle Ages, when it appeared in an Arab manuscript written before
972 (a later 10th century manuscript written by Mohammed Ben
Alcohain would go as far as to claim that the principal object of the
theory of rational right triangles is to find congruent numbers). It is
known that Leonardo Pisano, a.k.a. Fibonacci, was challenged around
1220 by Johannes of Palermo to find a rational right triangle of area
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n = 5, and Fibonacci found the triangle (%, %, %) We will explain a

method to find this triangle below. In 1225, Fibonacci wrote a more
general treatment about the congruent number problem, in which he
stated (without proof) that if n is a perfect square, then n cannot
be a congruent number. The proof of such a claim had to wait until
Pierre de Fermat (1601-1665) settled that the number 1 (and every
square number) is not a congruent number (a result that he showed
in order to prove the case n = 4 of Fermat’s last theorem).

The connection between the congruent number problem and el-
liptic curves is as follows:

Proposition 1.1.3. The numbern > 0 is congruent if and only if the
curve y? = 23 —n%x has a point (x,y) with x,y € Q and y # 0. More
precisely, there is a one-to-one correspondence C, <— FE, between
the following two sets:

c, = {(a,b,c):a2+b2=c2,%b=n}
E, = {(z,y):9y*>=2%—nz, y#0}.

Mutually inverse correspondences f : Cp, — E, and g : B, — C), are
given by

fllabe) = (2 25, o - (515, 22 2200,

The reader can provide a proof (see Exercise 1.4.3). For example,
the curve E : y?> = 23 — 25z has a point (—4,6) that corresponds to
the triangle (2,22, 4). But E has other points, such as (%, E=ny

that corresponds to the triangle
(1519 4920 3344161)

492 ' 15197 747348
which also has area equal to 5. See Figure 2.

Today, there are partial results toward the solution of the congru-
ent number problem, and strong results that rely heavily on famous
(and widely accepted) conjectures, but we do not have a full answer
yet. For instance, in 1975 (see [Ste75]), Stephens showed that the
Birch and Swinnerton-Dyer conjecture (which we will discuss in Sec-
tion 5.2) implies that any positive integer n = 5, 6 or 7 mod 8 is a
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2
a0k 1681 6279

144 > 1728

30
20}
(—4,6) 10F

- -2.5 25 7.5 10 125

Figure 2. Two rational points on the curve y? = 23 — 25z.

congruent number. For example, n = 157 =5 mod 8 must be a con-
gruent number and, indeed, Don Zagier has exhibited a right triangle
(a,b,c) whose area equals 157. The hypotenuse of the simplest such
triangle is:
2244035177043369699245575130906674863160948472041
T 8912332268928859588025535178967163570016480830
In Example 5.2.7 we will see an application of the conjecture of Birch
and Swinnerton-Dyer to find a rational point P on y? = 2% — 1572z,
which corresponds to a right triangle of area 157 via the correspon-
dence in Proposition 1.1.3.

The best known result on the congruent number problem is due
to J. Tunnell:

Theorem 1.1.4 (Tunnell, 1983, [Tun83|). If n is an odd square-
free positive integer and n is the area of a right triangle with rational
sides, then the following cardinalities are equal:

#{(x,y, Z) €73 :n=2z2 + y2 +3222}
1 «
=5 (#{@y,2) €2’ :n =27+ +82°})



