Structured
| Assembler Language

Alton R. Kindre



Structured

Assembler Language

for IBM Computers

Alton R. Kindred

Manatee Community College

D@

Harcourt Brace Jovanovich, Publishers
and its subsidiary, Academic Press

San Diego New York Chicago Austin Washington, D.C.
London Sydney Tokyo Toronto



Copyright © 1987 by Harcourt Brace Jovanovich, Inc.

All rights reserved. No part of this publication may be re-
produced or transmitted in any form or by any means,
electronic or mechanical, including photocopy, record-
ing, or any information storage and retrieval system,
without permission in writing from the publisher.

Requests for permission to make copies of any part of the
work should be mailed to: Permissions, Harcourt Brace
Jovanovich, Publishers, Orlando, Florida 32887.

ISBN: 0-15-584070-3
Library of Congress Catalog Card Number: 86-70503

Printed in the United States of America



Preface

As a student of computer science, you probably learned programming
through a high-level language, such as Pascal, BASIC, FORTRAN, or COBOL.
You also realize that much of the application programming in the business
world is done in high-level languages. You might then wonder, “Why should
I study assembler language?”

Benefits of Assembler Language

Assembler language provides a broad understanding of machine functions
and processing techniques that cannot be matched through any other source.
It offers alternative choices of instructions for data manipulation and calcula-
tions. It helps you to understand why certain file and data definitions cause
more efficient operations than others do. You may find that subprograms
written in assembler language can be called from high-level languages to per-
form specific tasks not otherwise possible.

Through assembler language you can gain a detailed understanding of ad-
dress modification, register operations, table handling, and other functions
common to many languages. Moreover, you can learn to analyze object code
and diagnose storage dumps, both valuable tools in debugging.

Some people contend that assembler language should be avoided because
programs must be rewritten every time the hardware is changed. But the IBM
family of computers starting with the System/360 and progressing through
the 370, 3030, 3080, and 4300 series—as well as a large group of IBM-compat-
ible computers—has used the same assembler language for over 20 years. Al-
though the language has been expanded, programs written in the 1960s can
usually be run with few or no changes on hardware that has changed dramat-
ically over the years. Few high-level languages have been so stable.

Shortcomings of Other Textbooks

Many assembler textbooks have certain shortcomings that I have tried to
overcome here. They present too much detail early in the text, before the stu-
dent has an opportunity to assimilate and apply it. They wait too long to pro-
vide enough information to produce a complete program. They show too few
complete programs—and these usually appear late in the book. They depend



Vi I Preface

on artificial tools, such as special housekeeping and input/output macros,
and often ignore the use of disk files entirely.

But the most serious omission in many assembler books is lack of atten-
tion to the principles of structured programming. Students who have learned
proper structure in their introductory courses are perplexed at the disregard
of proper branching and modular design they often find in their assembler
texts.

Features of This Book

This book employs many techniques to design and write correct programs.
Structured programming is demonstrated and practiced throughout. Initially,
each program is shown in flowchart form, pseudocode, and assembler lan-
guage. Later the flowcharts are eliminated.

A new method is introduced by which each type of program structure—
sequence, repetition, and selection—is clearly identified by the use of names
such as IF, THEN, ELSE, ENDIF, DOWHILE, ENDDO, REPEAT, and UNTIL.
Consistent use of these names helps to ensure proper structure.

Page heading subroutines are introduced with the first program and other
subroutines are emphasized throughout as ways to improve and extend mod-
ular structure.

Programs begin with simple character operations and gradually move on
to decimal arithmetic, editing, binary arithmetic, address modification, and
table handling. Later chapters, which may be omitted without loss of conti-
nuity, deal with subprograms, advanced register operations, macro defini-
tions, and floating-point numbers.

No special non-system macros are used. File definitions and processing
macros for both DOS and OS are provided as a model that can be used for
each of the programs.

Data types and machine instructions are introduced only as needed and
are immediately utilized in examples and sample programs. Detailed summa-
ries are presented in appendixes.

Early sample programs are based on the same data set to give continuity
and relevance.

File creation and processing are covered with sequential, indexed se-
quential, and VSAM files. Sample programs illustrate each form of process-
ing for each type of file.

Organization of the Text

The book contains 18 chapters and five appendixes. The intent is always to
work from familiar concepts and material to new ones. The first seven chap-
ters should be taken in sequence. Chapter 1 reviews basic hardware and soft-
ware concepts, with special emphasis on structured program development.
Chapter 2 covers types of assembler language statements, file and data defini-
tions in both DOS and OS, and procedural instructions to permit develop-



Preface | vii

ment of a complete program utilizing a heading subroutine. Chapter 3
develops more complex program logic while continuing to work with data in
character form.

Chapters 4 and 5 introduce packed decimal numbers, arithmetic opera-
tions, and editing. Standards modules are developed for reading records and
printing lines.

Chapter 6 introduces more technical material on base-displacement ad-
dressing, machine instruction formats, the condition code and branching,
and input/output channels.

Chapter 7 covers techniques to avoid errors in programs and detect those
that do occur. Output from the assembler and linkage editor is examined, and
detailed analysis of a core dump is explained.

Chapter 8 presents control break processing, with single-level and multi-
ple-level totals. This chapter may by studied in sequence or deferred until
later, when magnetic tape and disk files are covered.

Chapters 9 and 10 deal with operations on binary numbers, address mod-
ification, and table handling. Conversion between decimal and binary num-
bers, arithmetic operations, shifting within registers, and creating and
searching tables are treated in detail.

Chapter 11 shows subroutines and subprograms as means of expanding
modular structure of programs. Chapter 12 explains macro definitions and
conditional assemblies as ways to simplify programming for definitions and
routines that are frequently used.

Chapter 13 presents advanced logical operations for working on individ-
ual bits within a byte, translating data from one coding structure to another,
or scanning strings of characters. This chapter can be studied immediately af-
ter Chapter 10 if desired.

Chapters 14 and 15 discuss sequential files on magnetic tape and disk.
Topics include fixed-length and variable-length records, blocked records,
volume and file labels, disk track capacity, and processing techniques.

Chapters 16 and 17 cover indexed sequential and VSAM files. Either or
both may be omitted without affecting any of the book’s other contents.

Chapter 18 concludes the text with a discussion of floating-point data,
arithmetic operations, and conversion from fixed-point to floating-point data.

Each chapter contains a statement of objectives, numerous illustrations,
and (except for Chapter 1) one or more complete illustrative programs. Each
chapter concludes with a summary, a list of terms for review, questions for
discussion, exercises, and programming problems.

The appendixes include a glossary, a summary of machine instructions,
the IBM System/370 reference summary, data for programming problems, and
answers to exercises.

Supplemental Materials

An instructor’s manual is available with teaching suggestions and a large
bank of test questions.



viii l Preface

The following IBM publications will provide valuable additional
information:

A22-6821 System/360 Principles of Operation

GA22-7000 System/370 Principles of Operation

GA22-7070 IBM 4300 Processors Principles of Operation

GC24-5099 OS/VS1 JCL Reference

GC24-5103 OS/VS1 Supervisor Services and Macro Instructions

GC33-4010 OS/VS-DOS-VS-VM-370 Assembler Language

GC33-4021 OS/VS-VM/370 Assembler Programmer’s Guide

GC33-4024 Guide to the DOS/VSE Assembler

GC33-5372 DOS/VS Data Management Guide

GC33-5373 DOS/VS Supervisor and I/O Macros

G320-5774 VSAM Primer and Reference

Acknowledgments

Many people have contributed to the development and production of this
book. My students at Manatee Community College have field-tested many of
the structured concepts evolving over the past three years. My colleagues in
the computer science department and the computer center have offered valu-
able support and assistance.

The manuscript was reviewed by Joseph S. McFarland, Dundalk Com-
munity College, who offered numerous helpful criticisms and suggestions.
Dale Brown, of Academic Press, and Ralph Zickgraf, of EDP, Inc., lent their
expertise in technical production.

Special thanks, as always, are reserved for my loving wife, Joy, who gave
her unfailing inspiration and support throughout the long hours of creation
and development of the book.

Alton R. Kindred



Contents

Basic Computer Concepts

THE COMPUTER SYSTEM 1
HARDWARE 2
Main Storage 2
Central Processing Unit 3
Control Unit 3
Arithmetic-Logic Unit 4
Input/Output Devices 4
SOFTWARE 5
The Operating System 5
DOS 7
0S 8
Application Programs 10
STRUCTURED PROGRAM DEVELOPMENT 10
Defining the Problem 10
Planning the Logical Solution 12
Sequence Structure 13
Repetition Structure 14
Selection Structure 16
Coding and Assembling the Program 16
The Assembly Process 18
Relocating the Program 19
Testing the Program 19
Completing the Documentation 20
DATA CODES 21
EBCDIC Code 21
Hexadecimal Numbers and Addresses 22

Getting Started in Assembler Language

THE CODING FORM 30
TYPES OF STATEMENTS 32
Machine Instructions 32

30



l

Contents

Assembler Instructions 32
Macro Instructions 34
PARTS OF A PROGRAM 34
File Definitions 34
DOS 35
0s 37
Data Definitions 38
Defining Constants 38
Defining Storage 39
Procedural Instructions 41
PROGRAM 1: READING AND PRINTING RECORDS 44
Housekeeping and Initialization 45
The Heading Subroutine 48
The Priming Read 48
The Mainline Loop 49
The End-of-File Routine 51
0S Version of Program 1 51

More Operations with Characters

EXPLICIT LENGTHS IN MOVING CHARACTERS 58
RELATIVE ADDRESSING 60

MOVING OVERLAPPING FIELDS 60

LITERALS B2

IMMEDIATE INSTRUCTIONS 63

DEFINING HEXADECIMAL CHARACTERS 64
COMPARING CHARACTERS 65

CONDITIONAL BRANCHING 65

NESTED IF STATEMENTS 66

COMPOUND CONDITIONS 67

PROGRAM 2: PRINTING SELECTED RECORDS B39
PROGRAM 3: PRINTING SELECTED RECORDS 70

Packed Decimal Addition, Subtraction, and
Editing
ZONED DECIMAL DATA 79
PACKED DECIMAL DATA 80
The Pack and UNPK Instructions 83
Defining Packed Decimal Data 84
DECIMAL ADDITION, SUBTRACTION, AND COMPARING 85
EDITING DATA 88
The Edit Pattern 89
Zero Suppression 89

79



Inserting Characters S0
AN ALTERNATE EDITING APPROACH 91
The Unpack (UNPK) Instruction 91
The Move Zones Instruction 92
PROGRAM 4: ACCUMULATING TOTALS 83

More Decimal Operations and Modular
Structure

MULTIPLICATION 100
Aligning Decimal Points 101
The Multiply Packed (MP) Instruction 102
Rounding 103
Dropping Excess Digits 104
Move Numeric (MVN) Instruction 104
Move with Offset (MVO) Instruction 105
Rounding with the SRP Instruction 107
DIVISION 108
THE ASA CONTROL CHARACTER 110
Printing Heading Lines 111
Printing Detail Lines 112
Printing Total Lines 113
STANDARD MODULE TO READ RECORDS 113
PROGRAM 5: ACCUMULATING TOTALS AND AVERAGING 115

Computer Architecture

GENERAL REGISTERS 125
BASE-DISPLACEMENT ADDRESSING 126

Program Status Word 127

Explicit Register Addressing 128

Multiple Base Registers 129
INSTRUCTION FORMATS 131

RR Instructions 131

RX Instructions 133

RS Instructions 134

Sl Instructions 134

SS Instructions 135

S Instructions 135

Instruction Length Codes 135
CONDITION CODE AND BRANCHING 136
INPUT/OUTPUT CHANNELS 138
PROGRAM B: ANNUAL TOTALS BY PAY TYPE 140

Contents

Xi

100

125



xii | Contents

7. Diagnostics and Debugging 149

AVOIDING ERRORS IN PROGRAMS 1489
DETECTING ERRORS AT ASSEMBLY TIME 151
Source Statement Listing 152
The Location Counter 155
Object Code 155
ADDR1 and ADDR2 156
The Literal Pool 156
Diagnostics and Statistics 156
OTHER ASSEMBLER OUTPUT 159
External Symbol Dictionary 159
Relocation Dictionary 158
Cross-Reference Listing 161
PROGRAM RELOCATION AND LINKAGE 161
The Linkage Editor Map 165
Input/Output Modules 165
DETECTING ERRORS AT RUN TIME 166
System Diagnostic Aids 167
Analyzing the Core Dump 170

8. Control Break Processing 177

CHECKING SEQUENCE 177
CONTROL BREAK PROCESSING 178
Single-Level Totals 179
Multiple-Level Totals 180
PROGRAM 8: TOTAL MEN AND WOMEN BY JOB CODE WITHIN
DEPARTMENT 180
CONTROL BREAK PROCESSING WITH IF-THEN-ELSE STRUCTURE 187

9. Binary Operations 192

BINARY NUMBER REPRESENTATION 192
Unsigned Binary Numbers 193
Signed Binary Numbers 193
DEFINING BINARY DATA 185
Binary Constants 195
Fullwords 195
Halfwords 195
Address Constants 1396
MANIPULATING BINARY DATA 186
Loading and Storing Fullwords or Halfwords 197



10.

Contents xiii

Loading Addresses 198
Loading and Storing Multiple Registers 198
Other Load Instructions 198
CONVERSION TO AND FROM BINARY 200
BINARY ADDITION AND SUBTRACTION 201
Overflow in Binary Arithmetic 201
Fullword Addition and Subtraction 204
Halfword Addition and Subtraction 204
Addition with Load Address Instruction 205
Subtraction with Branch on Count Instruction 206
BINARY COMPARISON 206
SHIFTING BINARY NUMBERS 206
Single Register Shifts 207
Double Register Shifts 208
BINARY MULTIPLICATION 208
Fullword Multiplication 209
Halfword Multiplication 211
BINARY DIVISION 211
Rounding Binary Numbers 213
PROGRAM 8: AVERAGE SALARY BY DEPARTMENT AND ORGANIZATION 214

Address Moadification and Table Handling 222

INITIALIZING ADDRESSES 223
MODIFYING ADDRESSES 223
EXPLICIT OPERANDS 224
INDEX REGISTERS 225
Branch on Index High Instruction 227
Branch on Index Low or Equal Instruction 227
DUMMY SECTIONS 228
DEFINITION OF A TABLE 230
TABLE ELEMENTS 231
CREATING THE TABLE 232
Defining Constants 232
Reading Table Records 232
The ORG Statement 233
SEARCHING TECHNIQUES 233
Factor Matching 235
Address Calculation 235
SINGLE-LEVEL TABLES 236
MULTIPLE-LEVEL TABLES 237
PROGRAM 10: LOCATING INSURANCE RATES 237



Xiv | Contents

11. System Macros, Subroutines, and
Subprograms 248

SYSTEM MACROS 248
COMRG Macro 248
GETIME Macro 248
TIME Macro 250
SUBROUTINES 251
Linkage 251
Calling Sequence 251
Address in Register 252
Parameter List 252
SUBPROGRAMS 254
EXTRBN and ENTRY Statements 255
Register Conventions 255
The CALL Macro 256
The SAVE and RETURN Macros 257
Base Registers for Subprograms 258
Subprogram Examples 259
Multiple-Level CALLS 261
Using Files in Subprograms 262
Assembler Subprograms with Other Languages 263
PROGRAM 11: TIMING OPERATIONS 263

12. Macro Definitions and Conditional
Assemblies 272

INVOKING MACROS 273
DEFINING MACROS 278
FORM OF THE MACRO DEFINITION 274
The MACRO Header 274
The Prototype Statement 274
The Body 275
The MEND Statement 275
TEXT INSERTION 275
TEXT MODIFICATION 276
Variable Symbols 2786
Positional Parameters 277
Keyword Parameters 278
Concatenation 278
Attributes 278
Length 279
Type 279
Count 281
Number 281



Contents XV

Integer 281
Scaling 281
Sublists 282
TEXT MANIPULATION 282
Conditional Assembly Language 283
SET Symbols 283
SETA Symbols 283
SETB Symbols 284
SETC Symbols 284
Sequence Symbols 284
Branching Statements 285
AlF 285
AGO 286
ACTR 286
ANOP 286
System Variable Symbols 286
SSYSLIST 286
S&SYSNDX 287
&SYSECT 287
&SYSPARM 288
&SYSTIME 288
S&SYSDATE 288
SEVERAL USEFUL MACROS 288
PROGRAM 12: SAV13 AND RET 13 MACROS 291

13. Advanced Logical Operations 299

BIT MANIPULATION 299
OR Instructions 300
AND Instructions 300
EXCLUSIVE OR Instructions 301
Test Under Mask Instruction 302
ADVANCED EDITING 304
Multiple Field Editing 304
Check Protection 304
Editing Negative Amounts 305
Edit and Mark Instruction 305
LOGICAL SHIFT INSTRUCTIONS 307
Single Register Shifts 307
Double Register Shifts 307
OTHER LOGICAL OPERATIONS 308
Data Movement 308
Addition and Subtraction 310
Comparison 311
Supervisor Call 312



XVi

14.

185.

Contents

TRANSLATE INSTRUCTION 313

TRANSLATE AND TEST INSTRUCTION 314

EXECUTE INSTRUCTION 315

PROGRAM 13: SCANNING CHARACTER STRINGS 318

Magnetic Tape Files

TAPE CHARACTERISTICS 325

Parity Bit 326

Longitudinal Check Byte 326

Interrecord Gap 326

Tap Density 326

Tape Speed 326
BLOCKED RECORDS 327
VARIABLE-LENGTH RECORDS 327
TAPE LABELS 328
MAGNETIC TAPE FILE DEFINITIONS 332

DOS 332

0S 333
OPEN, CLOSE, GET, PUT MACROS 333
RECORD PROCESSING 334

Using a Work Area 335

Processing in the Input/Output Area 336
PROGRAM 14A: CREATING A TAPE FILE 336
PROGRAM 14B: RETRIEVING A TAPE FILE 337
PROGRAM 14C: UPDATING A MASTER TAPE FILE 338

Sequential Disk Files

DISK CHARACTERISTICS 351
Cylinders 352
Access Timing 353
Track Format 353
Count, Key, Data Organization 353
Cyclic Check Bytes 354
TRACK CAPACITY TABLES 355
VOLUME TABLE OF CONTENTS 355
DISK LABELS AND EXTENTS 356
SEQUENTIAL DISK FILE DEFINITIONS 359
DOS 359
0S 358
OPEN, CLOSE, GET, PUT MACROS 359
PROCESSING SEQUENTIAL DISK FILES 360

PROGRAM 15A: CREATING VARIABLE-LENGTH RECORDS 362
PROGRAM 15B: PROCESSING VARIABLE-LENGTH RECORDS 366

325

351



Contents | Xvi

16. Indexed Sequential Files 364

FILE ORGANIZATION 374
Prime Data Area 375
Track Index 375
Cylinder Index 375
Master Index 376
Overflow Areas 356
Cylinder Overflow Area 356
Independent Overflow Area 356
INDEXED SEQUENTIAL FILE DEFINITIONS 377
DOS 378
0s 379
ERROR AND STATUS BYTE 380
MACROS FOR FILE CREATION AND EXTENSION 381
DTFIS 381
DCB 381
OPEN 381
SETFL 382
WRITE or PUT 382
ENDFL 383
CLOSE 383
PROGRAM 16A: CREATING AN INVENTORY MASTER FILE 383
MACROS FOR SEQUENTIAL RETRIEVAL 387
DTFIS 387
DCB 387
OPEN and CLOSE 387
SETL 387
GET 388
PUT or PUTX 388
ESETL 390
PROGRAM 16B: INVENTORY LISTING BY SEQUENTIAL RETRIEVAL 380
MACROS FOR DIRECT RETRIEVAL AND UPDATE 390
DTFIS 394
DCB 394
READ 394
WAITF or WAIT 395
WRITE 385
PROGRAM 1BC: INVENTORY MASTER DIRECT RETRIEVAL AND UPDATE 386
MACROS FOR ADDING AND DELETING RECORDS 401
DTFIS 401
DCB 402
READ or GET 402
WRITE or PUT 402
PROGRAM 16D: ADDING AND DELETING INVENTORY RECORDS 403
PROGRAM 16E: REORGANIZING THE INVENTORY FILE 403



xviii

17.

Contents

SUMMARY OF PROCESSING MACROS, I/0 AREAS, AND WORK AREAS

VSAM Files

PHYSICAL ORGANIZATION 414
Control Intervals 415
Control Areas 415
LOGICAL ORGANIZATION 416
ESDS 416
KSDS 416
RRDS 417
Comparison of the Three Types 418
COMPONENTS OF VSAM DATA SETS 418
Cluster 418
Data 418
Index 418
Alternate Indexes 4189
ACCESSING AND PROCESSING VSAM RECORDS 418
Accessing Records 4189
Processing Records 420
Sequential Processing 420
Direct Processing 420
Skip Sequential Processing 420
ACCESS METHOD SERVICES (AMS) 421
The DEFINE Command 421
CLUSTER 421
DATA 422
INDEX 422
CONTROL BLOCK MACROS 424
ACB 424
RPL 425
EXLST 425
REQUEST MACROS 426
OPEN 426
CLOSE 426
GET 427
PUT 427
POINT 427
ERASE 428
EXECUTABLE CONTROL BLOCK MACROS 428
GENCB 428
MODCB 428
TESTCB 429
SHOWCB 428
PROGRAM 17: REORGANIZE VSAM FILE 430

407

414



