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Preface

Steve Rosenberg has made many important contributions to Differential Geo-
metry, Global Analysis and Mathematical Physics, and found numerous applica-
tions of Spectral Theory to these fields. His book The Laplacian on a Riemannian
Manifold has helped many graduate students to enter the world of Global Analysis.

Steve Rosenberg’s 60th birthday was celebrated at the conference “Analysis,
Geometry and Quantum Field Theory” organized by Jouko Mickelsson and Sylvie
Paycha at Potsdam University in September 2011. The speakers of the conference
were internationally renowned experts in Geometry and Analysis; many of them
were Steve's collaborators or former students.

The wide range of topics represented in this volume, from Stochastic Analysis
to Differential K-theory and from Quantum Field Theory to Mathematical Biology.
speaks to the broadness of Steve Rosenberg’s mathematical interests.

We would like to thank the authors who contributed to this volume as well as
those who served as referees. We are also very grateful to Arthur L. Greenspoon
for the very careful editing of most of the papers appearing in this volume.
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A duality for the double fibration transform

Michael G. Eastwood and Joseph A. Wolf

ABSTRACT. We establish a duality within the spectral sequence that governs
the holomorphic double fibration transform. It has immediate application to
the questions of injectivity and range characterization for this transform. We
discuss some key examples and an improved duality that holds in the Hermitian
holomorphic case.

1. Double fibrations

In this article we shall always work in the holomorphic category. By a double
fibration we shall mean a diagram of the form

Xp
(1.1) y V\
D Mp

where

e D, Xp, and Mp are complex manifolds;

e 1 is a holomorphic submersion with contractible fibers:
(1.2) e v is a holomorphic submersion with compact fibers;

e Xp M% D x Mp is a holomorphic embedding;

e M is a contractible Stein manifold.
Examples of double fibrations arise naturally as follows. Let G be a complex
semisimple (or even reductive) Lie group. There is a beautiful class of complex
homogeneous spaces Z = G /@ that can be characterized by any of the following
equivalent conditions (see e.g. [6] for details).

e Z is a compact complex manifold;
e 7 is a compact Kahler manifold;
e / is a complex projective variety;
e (Q is a parabolic subgroup of G.
We shall refer to such compact complex homogeneous spaces Z as complez flag
manifolds. Now fix a complex flag manifold Z = G/@Q and consider a real form Gy
of G. Then it is known [9] that the natural action of Gy on Z has only finitely
many orbits and so there is at least one open orbit. If Gy is compact, then it acts
transitively on Z and there are few other exceptional cases when this happens.
2010 Mathematics Subject Classification. Primary 32L25; Secondary 22E46, 32L10.
MGE: Research supported by the Australian Research Council.
JAW: Research partially supported by NSF Grant DMS 99-88643.
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2 MICHAEL G. EASTWOOD AND JOSEPH A. WOLF

Otherwise, an open Gg-orbit D C Z is known as a flag domain. As a simple
example, let us take G = SL(4, C) acting on Z = CP3 in the usual fashion, namely
SL(4,C) x CP3 > (A, [2]) — [Az] € CP3,

where z € C* is regarded as a column vector. If we take

* * * k%
8 & CPy 55 basepoint, then Q= g F Yt esLeo)
0 0 * x %
If we take Gy = SU(2,2), defined as preserving the Hermitian form
(1.3) (w, 2) = w\Z1 + woZy — W3Z3 — W4Za
on C*, then

D =CP3 = {[2] € CP3 | |z1]* + |22| — |23]% — |2a|* > 0}

is a flag domain for the action of Gy on Z.

In general, fixing Ky C Gy a maximal compact subgroup, it is known [9] that
there is just one Ky-orbit Cj in D that is a complex submanifold of Z. We regard
C)y as the basepoint of the cycle space

M p = connected component of Cy in {gCy | ¢ € G and gCy C D}
of D. Evidently, M p is an open subset of
Mz ={9Co | g€ G}=G/J, where J={g€G|gCo=Co}
and hence is a complex manifold. Let us set
Xz=G/(QNJ) and Xp={(2,C)e D xMp|zeC}.
Then

Xp Xz
(1.4) 'y \/‘ open / \
D Mp Z Mz

and it is known for any flag domain (see e.g. [6] for details) that all the conditions
(1.2) of a double fibration are satisfied.
In our example, we may take

* % 0 0
* % 0 0
(1.5) Ko =S(U(2) x U(2)) = 00 % x € SU(2,2)
10 0 * =
whence
* (% % * *
* *x ok x %
Co= 0 eCP3p, J=24 0 0 % € SL(4,C) ,,
0 ([0 0 * =«

and Mz = Gry(C?), the Grassmannian of 2-planes in C*. The base cycle Cj and,
therefore, every other cycle is intrinsically a Riemann sphere CP;. Geometrically,

Mp = {Il € Gry(C*) | (-, -)|n is positive definite} = M+
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and analytically we may realize Mp as a convex tube domain in C*
Mp2{{=z+iyeC*|z®> x2 + 232 + 242 and z; > 0}
by means of
1+G+¢ C3 — 1G4
(3 +1Ca 1+G — G
1—-G =G|’ | —Cs+iCa
—(3 — 1G4 1-G+¢
Notice that, in this particular case, the cycle space Mp is itself a flag domain (for
the action of SU(2,2) on Gry(C*)). This is unusual.

For our second example, let us start with another of the open orbits of SU(2,2)
on Gry(C*), namely

D = {Il € Gro(C*) | (-, -)|n is strictly indefinite} = M*~.

C* 5 (¢1, 2y €3, Ca) — I = span

With the same choice (1.5) of maximal compact subgroup K, the base cycle Cj is

a of the form [, x,0,0]* }

{H & Gna(C) | 1= span{a, B} for some { 3 of the form [0,0, %, *]*

Hence the base cycle and, therefore, every other cycle is intrinsically CP; x CP;. By
definition, we always have J O K, the complexification of Kj, but often they are
equal, and this is the case here. The cycle space Mp is M*t+ x M~ where M~ —
denotes the set of planes in C* on which (- , -) is negative definite. As a product of
two Stein manifolds it is Stein. For (II;,II;) € Mp, the corresponding cycle is

{II € Gry(C*) | 11 = span{a, 3} for some a € II; and f € I, }.

2. The transform

Consider a general double fibration (1.1), satisfying the conditions (1.2), and
suppose we are given a holomorphic vector bundle £ on D and a cohomology class
w € H"(D; O(F)). We shall continue to refer to the compact complex submanifolds
(v~ (z)) for x € Mp as cycles in D and now consider the restriction of w to these
cycles:

Wpw-1(z)) € H (,u(l/'l(:c)); (’)(E|#(,,—1(x)))), as x € Mp varies.

As v has compact fibers, these cohomology spaces are finite-dimensional and we
shall suppose that their dimension is constant as x € M p varies (generically this
is the case and in the homogeneous setting, as discussed above, this is manifest if
one starts with E' a G-homogeneous vector bundle). Then, as x € Mp varies we
obtain a vector bundle E’ on Mp and a holomorphic section Pw € I'(Mp, O(E’))
thereof. This is the double fibration transform of w. It is often most interesting
starting with cohomology in the same degree as the dimension of the fibers of v.
Two natural questions associated with this transform are

e is it injective?

e what is its range?
There are clear parallels with the Radon transform and other transforms from real
integral geometry, especially when integrating over compact cycles.

The complex version, however, benefits from the following general result.
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THEOREM 2.1. For any double fibration (1.1), and holomorphic vector bundle
E on D, there is a spectral sequence

(2.1) EPY = D(Mp; V12 (E)) = HP(D; O(E)),
where
o Q) =0y /u*Qp, the holomorphic 1-forms along the fibers of p;

o I = APQf‘, the holomorphic p-forms along the fibers of p;
e B(E)=0 ®u*E.

PROOF. There are two stages to the proof, the details of which may be found
in [1]. The first uses that the fibers of i are contractible to conclude that

H"(D;O(E)) = H"(Xp;u~ ' O(E))

where ;1= 'O(FE) denotes the sheaf of germs of holomorphic sections of u*E on Xp
that are locally constant along the fibers of p. The second stage uses the resolution
0— p'O(E) > 2% (E) to construct a spectral sequence

EP? = HY(Xp; (E)) = H"*(Xp; ' O(E)),

which combines with the natural isomorphisms HY(Xp,O(F)) = T'(Mp,vIO(F)),
valid for any holomorphic vector bundle F' on Xp because Mp is Stein. O

For the rest of this article we shall suppose that the direct images v{ W (E ) are
locally free and therefore may be regarded as holomorphic vector bundles on Mp.
From this viewpoint, the E;-differentials become first order differential operators on
M p and, more generally, the spectral sequence ideally interprets the cohomology
H™(D;O(E)) in terms of systems of holomorphic differential equations on Mp.
This is especially interesting when D is a flag domain, Mp is its cycle space, and
E is G-homogeneous because then this double fibration transform can provide useful
alternative realizations of the Go-representations afforded by H"(D; O(E)).

3. Examples

Let us now return to the flag domains introduced in §1 and see how the spectral
sequence (2.1) works out for the first of these domains, namely D = CP;. The
main issue in executing (2.1) is in computing the direct images vIQ% (E). We need
a notation for the irreducible homogeneous vector bundles on the flag manifold Z.
For this we shall follow [1], recording both the parabolic subgroup @ and the
representation of () by annotating the appropriate Dynkin diagram (it turns out to
be most convenient to record the lowest weight of the representation). For our first

domain, in which Z = CPj3, the irreducible homogeneous vector bundles are

b . .
% o o for integers a, b, ¢ with b,c > 0.

The details are in [1] but some particular cases are

% o e = the trivial bundle = O

%—e o =the holomorphic tangent bundle = ©
X—e o =the holomorphic cotangent bundle = 0!
% e = the bundle of holomorphic 2-forms = 2
%o o =the tautological bundle = O(1)

% o o =thekth power of the tautological bundle = O(k).
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Similarly, the irreducible homogeneous vector bundles on Xz, the flag manifold
F12(C* = {(L,1I) € CP3 x Gra(C*) | L 11}
are given by
Q——Q—: for integers a, b, ¢ with ¢ > 0.

For computational purposes, it is always better to consider the diagram

Xz=G/(QNJ)
(3.1) WO
G/Q=2 Mz =GJJ

from (1.4), where we have extended the definition of ;1 and v to Xz as shown. The
point is that, with this enhanced definition of v, we have Xp = v=1(Mp) and
so the fibers over Mp are unchanged. In particular, the direct images v Qﬁ(E),
as required in the spectral sequence (2.1), can be computed from (3.1) and then
simply restricted to the open Stein subset Mp C Mgz. The advantage of (3.1) is
that all three spaces are G-homogeneous and the two mappings are G-equivariant.
Hence, we may use representation theory to compute v{ O (E) etc.

With this enhanced viewpoint in place, the bundles of holomorphic forms along
the fibers of yu are
(3.2) Q=% %o, Q=sx>2s, P=x5s.
Now let us consider the double fibration transform for H"(D;O(k)). Line bundles
are straightforward because

w*O(k) :,u*>k<——2—2 =5 3 8

which is irreducible. Writing QF (k) for QF @ u*O(k), we have

(3.3) Qg(k) _k 0 0 Qlll(k) _kil -2 1 Qi(k) _k¥2-3 0
The direct images are computed in accordance with the Bott-Borel-Weil Theorem
along the fibers of v, which reads

a b c a b c
34 Uyx—x—o — o—x—9 fora>0
( : ) 1a b ¢ —a—2 a+b+1l ¢
Uy—x—o — o——x o fora<—2

with all other direct images vanishing (see e.g. [1] for details). In particular, there

are the spectral sequences (2.1) of the following form.
q

f “t
0 0 0 —k—2 k41 0 —k—3 k 1 —k—4 K 0
| *—<—0 *——x—=o *——x—o
k 0 0 k+1 -2 1 k42 -3 0 |
e — X e — e Xx—e—, 0 0 O—>p

Let us say that the spectral sequence ET'? is concentrated in degree zero if and
only if EY"? = 0 for ¢ > 0 and strictly concentrated in degree zero if and only if, in
addition, Ef’O # 0, Vp. Similarly, let us say we have concentration in top degree if
and only if Ef"? = 0 for ¢ < s, where s = dimc(fibers of v) and strictly so if and
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only if E"® # 0, Vp. Thus, strict concentration occurs in this example for £ > 0 or
k < —4. In fact, it is easily verified that

k>0 == strict concentration in degree zero,
k=—-1 = concentration in degree zero,
(3.5) k= -2 = no concentration,
k=-3 = concentration in top degree (s = 1),
k<-4 = strict concentration in top degree.

The double fibration transform in this case is known as the Penrose transform [4].
Always, the spectral sequence is most easily interpreted when it concentrates in top
degree for then it collapses to yield, in particular, an isomorphism

P : H*(D; O(E)) == ker : I(Mp; v (E)) = [(Mp; viQ,(E)).
In our example

P HY(D; O(k)) = ker : T(Mp; ¥ §) 5 T(Mpi L& o),
for £ < —3 and the right hand side has an interpretation in physics as so-called
massless fields of helicity —1 — k/2 (see e.g. [4] for details).

The main aim of this article is to show that concentration in zero versus top
degree are related by a duality. This will turn out to be useful because the spectral
sequence has simple consequences when concentrated in top degree whereas criteria
for concentration in degree zero are more easily determined.

4. The duality

THEOREM 4.1. Let kp and kaq,, denote the canonical bundles on D and Mp,
respectively. Let d = dimg(fibers of p) and recall that s = dime(fibers of v). Then
there are canonical isomorphisms

(4.1) VI (kp ® E*) = kpmp @ (Vf_qQZ"’(E))*, VO<p<d,0<qg<s.

The spectral sequence (2.1) for the vector bundle E is (strictly) concentrated in top
degree if and only if the corresponding spectral sequence for kp @ E* is (strictly)
concentrated in degree zero.

PRrROOF. Certainly, the last statement follows immediately from (4.1): as Mp
is contractible and Stein, if v{QF (E) is non-zero then neither is I'(Mp; v!Q%(E)).

Notice that (4.1) generalizes Serre duality [8]. Specifically, if D is an arbitrary
compact manifold, then we may take Xp = D and Mp to be a point. Then d = 0,
direct images revert to cohomology, and (4.1) becomes

HY(D;O(kp ® E*)) = H*"9(D; O(E))".

Conversely, Serre duality along the fibers of v is the essential ingredient in proving
(4.1) as follows. Let kx, denote the canonical bundle on Xp. Since p and v are
submersions, we can write kx, in two different ways:

(4.2) Kxp, = 1 (kp) @k, and Kx, =V (kmp) @ Ky,

where £, and &, are the canonical bundles along the fibers of p and v, respectively.
Thus, bearing in mind the Hodge isomorphism QF, = k, ® (QZ"’)* along the fibers
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of i, we find that
I/foL(KD ® E*)

v (" (k) ® Q% © p* (E7))
vi(kxp ® K, ® 0 ® w*(E*))
vi(v* (kmp) ® Ky @ (K1, @ F) @ p*(E*))
Kmp @ Vi (K, ® (QLP)* @ u* (E™))
= Kmp @ V(K ® (P @ u*(E))*),
which may be identified by Serre duality along the fibers of v to give
VI (kD ® E*) = kmp ® (WU @ p*(E))) = kmp @ (13 IQTP(E)),

as required. O

5. Applications

Let us firstly show how Theorem 4.1 yields (3.5) with minimal calculation. It
is clear from (3.3) that strict concentration in degree zero occurs if k > 0. Indeed,

. -1.0 0 . . " :
since x—x—se is singular along the fibers of v it is also clear that concentration

in degree zero also occurs when k£ = —1. But now
) k 0 Oy —4 0 0 _—k 0 0 —k—4 0 0
Kp @ (x—e—e ) = QD X—x—e = x—eo—o

and Theorem 4.1 tells us that we have strict concentration in top degree if and only
if =k —4 > 0, which gives k < —4 as expected. Similarly, —k —4 = —1 if and only
if k=-3.
To extend this analysis to vector bundles there are two issues to be overcome.
The first is that the pullback p*( £ 25 ) is reducible in general. Specifically,
a+2 b—4 c42

X——XK—0
(5.1) atl b—2 c+l @ )
X——x—=o Y
a b ¢ a b ¢ +2 b-—3 . a+b+c —b—c b
P(—e—o)=x—x—o + @ + N5 et i+ .
a+l b—1 c—1 ®
X——X—=0
a+2 b—2 c-—2
X——x—0

The second is that, even for an irreducible bundle V' = % % ¢ on Fi2(C*), the
bundle Q}L ® V may be reducible. For example, these two issues in combination
imply that

2 —2 2
1 0 1 1 -2 1 1 0 1 2 -1 0 - 3 -3 1
QL(x—o—o)z e®( ® + e)z 55 + %—x—e
2 -1 0
and the spectral sequence vaﬁ(;(—g—l ) takes the form
K
0 0 0
(5.2) |
10 1 2 -2 2 2 -1 0 3 -3 0
e < e <o D e—x—e *—x—=o
+ — + —  + —
2 -1 0 3 -3 0 4 -4 0
*—<—o *—<—@ *——x—o

In particular, it is concentrated in degree zero. This is a general feature as follows.
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a

THEOREM 5.1. The spectral sequence for HT(D:O(x—g—g )) associated to
the double fibration

Xp Xz =F2(CY)
(53) ’y x/\ open - y V‘
CPi =D Mp=M*+*+ CP3=2Z My = Gry(CTH)

15 strictly concentrated in degree zero if a > 0.

PROOF. Firstly, notice that all the composition factors occurring in (5.1) are
dominant with respect to the first node if @ > 0. Although clear by inspection,
the underlying reason for this is that the composition factors are obtained from the

leading term M by adding simple negative roots for x—e—e , namely

(5.4) P 3 and 8 3

(minus the second two rows of the Cartan matrix for sl(4,C)) both of which have
a non-negative coefficient over the first node. Secondly, there is the question of
tensoring these composition factors with QF from (3.2). Each of Qf is dominant
with respect to the first node and, more generally,

b b
Qg® a c — a c
b 41 b=2 c+1 a4l b—1 c—1 .
(5.5) AULRe—x——o = BT e LS (ife>1)
booc 2 b-3
Qi@ a c _ a+ c

(noting that it is e (cf. (5.4)) that is responsible for the second direct

a b [ )

summand of Q}L( X—x—e Clearly, all the various composition factors occurring

: b ; . :
in QF( % e s ) are dominant with respect to the first node if a > 0 and, therefore,
all direct images are concentrated in degree zero, as required. |

COROLLARY 5.2. The spectral sequence for H" (CP3 ; O(M—g )) associated

to the double fibration (5.3) is strictly concentrated in top degree (namely, first
degree) if a < —4 — b —c.

PRrRoOOF. By standard weight considerations

(a b ¢ ),,, _ —a—b—c c b

and so
a b ¢ |4 -4 0 0 —a—b—c c b —4—a—-b—c ¢ b
Kepy Q@ (x—o—0 )" = oo @ Xx—eo—o = *—eo—o ,
and we require —4 —a — b — ¢ > 0 in accordance with Theorem 4.1. O

Further discussion of this example is postponed until §6.

Now let us consider the other example from §1, namely the flag domain M*—.
As usual, for computational purposes, we should extend the double fibration to the
diagram (3.1). In this case we obtain

Xz=G/(QNK)

:D/NM ot N

Y p=MttxM~~ GI‘Q(C4) =7 Mz = G/K
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where
* x 0 0

G/K =SL(4,C)/ 8 3 3 S = {(I;,103) € Gra(C*)x Grz(C*) | Ty h Iz }.
0 0 * =

An additional difficulty in effecting the transform in this case is that, having taken
SU(2,2) to preserve the standard Hermitian form (1.3), the usual basepoint for
Gry(C*) is not in the domain M*~. Instead, as basepoints we may take

* 0 * ¥k ok k
* 0 0 0 * 0 =x
0 |=* € Mz * €Z = Q= *  x k%
0 * 0 0 = 0 =*

On the other hand, we would like to denote the homogeneous vector bundles on

Grp(C*) by e ¢ as usual. In order to reconcile these two viewpoints, notice
that we may conjugate @ C SL(4,C) into standard form: explicitly,
-1

1 0 0 0] | = = x| |1 0 0 O ¥ kx k %

0O O 1 0[O0 = O /(0 O 1 0O x ok ok k| =
(3:6) 0 —1 0 Of | = * %=/ [0 —=1 0 O 10 0 % ox =Q.

0O 0 0 110 = 0 x|/ |0 O O 1 0 0 % =%

We are therefore confronted with the diagram

_ Xz =G/(QNK)
(5.7) 4 y \li
Gra(CY) =G/Q=G/Q=1Z Mz =G/K
as the computational key to the double fibration transform. The first consequence of

this additional feature appears in pulling back an irreducible vector bundle from Z
to Xz. As already mentioned, we shall identify Z as G/Q and write the irreducible

bundles thereon as g—)’l—: . Irreducible bundles on

* x 0 0

0 00
Xz =G/QNK)=SLAO/{ o o o .|

0 0 0 =

however, are carried by representations of the diagonal subgroup of @ N K. Hence,
pullback by g may be achieved by restriction to the subgroup

* * * * * * * *
~ EE T 0 *x *x x| _
Q - 0 0 * * 2 O 0 * * = B
0 0 % = 0 0 0 =
followed by conjugation as in (5.6). Explicitly,
~—k a b a—2 b+1 0 a—4 b+2 0 —a a+b 0
i*(e——e ) =0y X + + Foot e Bl %)

where o5 denotes the effect of the conjugation (5.6) on weights. This is a simple
Weyl group reflection, the effect of which is computed in [1], for example, to obtain

~xsa b 0 at+b —b b a+b—1 —b—1 b+1 a+b—2 —b—2 b+2 b —a—b a+b
A (e—x—e ) = x + + x———x ot e
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. a b c a b 0 0o 0 c
More generally, we may write e—x—e = e—x—e @ e—x—e to compute

a+b—1 —b—1 b+c+1

—
cour@ b c a+b —b b+c b+c —a—b—c a+b
(58) p'(e—x—e)= x—x—x + &b Tt —e—X .
a+b+1 —b—1 btc—1
e

The following proposition is almost immediate by inspection.

PROPOSITION 5.3. The direct images vi*( V- ) are strictly concentrated
wn degree zero if b > 0.

PROOF. It remains to observe that, recording the irreducible homogeneous
vector bundles on Mz by irreducible representations of K in the usual manner,

T s t

u,(x——x——x) = e—x%—o ifr>0 andt>0
1 r S+t+1 —t—2 . <
(5.9) l/*( ) = 02—)%o ifr>0 and t < —2
V()(—)(—X) M - sial ifr<—2 andt>0
2( ) =—r—2 r+s+t+2 —t—2 if r S 9 andt S _9
and all other direct images vanish; i.e., the usual formule [1] pertain. O

LEMMA 5.4. The holomorphic 1-forms along the fibers of p from the diagram
(5.7) are given by

1 -2 1 1 0 1
(5.10) ), = | o + ® B | x——x + ®
1 -1 -1 11 -1
PRrROOF. This is simply a matter of identifying the weights of q/(q N ¢). O

THEOREM 5.5. The spectral sequence for HT(D;O(:—i—z )) associated to
the double fibration

(5.11) / \

Gry(C*) ooPer M+t~ =D =Mttt xM——
is strictly concentrated in degree zero if b > 0.

PROOF. As for Proposition 5.3, we should inspect the composition factors in

4 ( — 5 & )= ® ﬁ*(g—)be—: ) and determine, with respect to the first and
last nodes, whether they are dominant or singular (i.e. whether the integer over
that node is non-negative or —1, respectively) since, according to (5.9), such an
inspection will determine whether we have (strict) concentration in degree zero. As
the composition factors are all line bundles, this is straightforward arithmetic. If
b > 1, then it is easy to check that the leading terms are dominant and the rest
are mostly dominant but occasionally singular. In this case, the conclusion of the
theorem is clear. When b = 0 there are just two exceptions, both of which occur



