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Number Games

and Other Mathematical Recreations

athematical recreations comprise puzzles and
M games that vary from naive amusements to so-
phisticated problems, some of which have never

been solved. They may involve arithmetic, algebra, geom-
etry, theory of numbers, graph theory, topology, matrices,
group theory, combinatorics (dealing with problems of
arrangements or designs), set theory, symbolic logic, or
probability theory. Any attempt to classify this colourful
assortment of material is at best arbitrary. Included in
this article are the history and the main types of number
games and mathematical recreations and the principles on
which they are based. Details, including descriptions of
puzzles, games, and recreations mentioned in the article,
will be found in the references listed in the bibliography.
At times it becomes difficult to tell where pastime ends
and serious mathematics begins. An innocent puzzle re-
quiring the traverse of a path may lead to technicalities
of graph theory; a simple problem of counting parts of a
geometric figure may involve combinatorial theory: dis-
secting a polygon may involve transformation geometry

and group theory; logical inference problems may involve
matrices. A problem regarded in medieval times—or be-
fore electronic computers became commonplace—as very
difficult may prove to be quite simple when attacked by
the mathematical methods of today.

Mathematical recreations have a universal appeal. The
urge to solve a puzzle is manifested alike by young and
old, by the unsophisticated as well as the sophisticated. An
outstanding English mathematician, G.H. Hardy, observed
that professional puzzle makers, aware of this propensity,
exploit it diligently, knowing full well that the general
public gets an intellectual kick out of such activities.

The relevant literature has become extensive, particu-
larly since the beginning of the 20th century. Some of it
is repetitious, but surprisingly enough, successive genera-
tions have found the older chestnuts to be quite delightful,
whether dressed in new clothes or not. Much newly cre-
ated material is continually being added.

This article is divided into the following sections:

History 1

Early history 1
Kinds of problems
Some examples

Pioneers and imitators 2

18th and 19th centuries 2

20th century 2

Types of games and recreations 3

Arithmetic and algebraic recreations 3
Number patterns and curiosities
Digital problems
Cryptarithms
Paradoxes and fallacies
Polygonal and other figurate numbers
Pythagorean triples
Perfect numbers and Mersenne numbers
Fibonacci numbers

Geometric and topological recreations 6
Optical illusions
Geometric fallacies and paradoxes

Impossible figures
Pathological curves
Mazes
Geometric dissections
Graphs and networks
Map-colouring problems
Flexagons
Manipulative recreations 9
Puzzles involving configurations
Chessboard problems
The Fifteen Puzzle
The Tower of Hanoi
Polyominoes
Soma Cubes
Coloured squares and cubes
Nim and similar games
Problems of logical inference 12

Logical puzzles
Logical paradoxes

Bibliography 13

History

EARLY HISTORY
People have always taken delight in devising “problems”
for the purpose of posing a challenge or providing intel-
lectual pleasure. Thus, many mathematical recreations of
early origin that have reappeared from time to time in new
dress seem to have survived chiefly because they appeal to
man’s sense of curiosity or mystery. A few survived from
the ancient Greeks and Romans: little was known about
them during the Dark Ages, but a strong interest in such
problems arose during the Middle Ages, stimulated partly
by the invention of printing, partly by enthusiastic writers
of arithmetic texts, and partly by the rivalry and disputa-
tions among early algebraists and scholars. Such activities
were most prominent on the Continent, particularly in
Italy and Germany. Notable contributors included Rabbi
ben Ezra (1140), Fibonacci (Leonardo of Pisa; 1202),
Robert Recorde (1542), and Gerolamo Cardano (1545).
Kinds of problems. The problems in general were of
two kinds: those involving the manipulation of objects,
and those requiring computation. The first required little
or no mathematical skill, merely general intelligence and
ingenuity, as for example, so-called decanting and difficult
crossings problems. A typical example of the former is
how to measure out one quart of a liquid if only an eight-,

a five-, and a three-quart measure are available. Difficult
crossings problems are exemplified by the dilemma of
three couples trying to cross a stream in a boat that will
hold only two persons, with each husband too jealous to
leave his wife in the company of either of the other men.
Many variants of both types of problems have appeared
over the years.

Some examples. Problems involving computation also
took on a variety of forms; some were as follows:

Finding a number. Think of a number, triple it, and
take half the product; triple this and take half the result;
then divide by 9. The quotient will be one-fourth the
original number.

“God-Greet-You” problems. For example, in “God greet
you, all you 30 companions,” someone says: “If there were
as many of us again and half as many more, then there
would be 30 of us.” How many were there?

The chessboard problem. How many grains of wheat
are required in order to place one grain on the first
square, 2 on the second, 4 on the third, and so on for
the 64 squares?

The lion in the well. This is typical of many problems
dealing with the time required to cover a certain distance
at a constant rate while at the same time progress is hin-
dered by a constant retrograde motion. There is a lion in
a well whose depth is 50 palms. He climbs /7 of a palm
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daily and slips back '/o of a palm. In how many days will
he get out of the well?

Courier problems. These are typified by the movements
of bodies at given rates in which some position of these
bodies is given and the time required for them to arrive at
some other specified position is demanded.

PIONEERS AND IMITATORS
The 17th century produced books devoted solely to recre-
ational problems not only in mathematics but frequently
in mechanics and natural philosophy as well. The first im-
portant contribution was that of the Frenchman Claude-
Gaspar Bachet de Méziriac, one of the earliest pioneers
in this field, who is remembered for two mathematical
works: his Diophanti, the first edition of a Greek text on
the theory of numbers (1621), and his Probléemes plaisans
et delectables qui se font par les nombres (1612). The
latter passed through five editions, the last as late as 1959;
it was the forerunner of similar collections of recreations
to follow. The emphasis was placed on arithmetic rather
than geometric puzzles. Among the outstanding problems
given by Bachet were questions involving number bases
other than 10; card tricks; watch-dial puzzles depending
on numbering schemes; the determination of the smallest
set of weights that would enable one to weigh any integral
number of pounds from one pound to 40, inclusive; and
difficult crossings or ferry problems.

In 1624 a French Jesuit, Jean Leurechon, writing un-
der the pen name of van Etten, published Récreations
mathématiques. This volume struck the popular fancy,
passing through at least 30 editions before 1700, despite
the fact that it was based largely on the work of Bachet,
from whom he took the simpler problems, disregarding
the more significant portions. Yet it did contain some
original work, and it served as a model for others, in-
cluding Mydorge and Schwenter. The first English edi-
tion (1633) bore the title: Mathematicall Recreations, or
a Collection of Sundrie Problemes, extracted out of the
Ancient and Moderne Philosophers, as Secrets in Nature,
and Experiments in Arithmeticke, Geometrie, Cosmogra-
phie, Horologographie, Astronomie, Navigation, Musicke,
Opticks, Architecture, Staticke, Machanicks, Chimestrie,
Waterworkes, Fireworks, etc. Not vulgarly made manifest
until this Time . ... Most of which were written first in
Greeke and Latine, lately compiled in French, by HENRY
VAN ETTEN Gent. And now delivered in the English
Tongue with the Examinations, Corrections, and Augmen-
tations [translated by William Oughtred)].

The rising tide of interest was exploited by French math-
ematicians Claude Mydorge, whose Examen du livre des
récréations mathématiques was published in 1630, and
Denis Henrion, whose Les Récréations mathématiques
avec l'examen de ses problemes en arithmétique, géome-
trie, méchanique, cosmographie, optique, catoptrique, etc.,
based largely upon Mydorge’s book, appeared in 1659.
Leurechon’s book, meanwhile, had found its way into
Germany: Daniel Schwenter, a professor of Hebrew, Ori-
ental languages, and mathematics, assiduously compiled a
comprehensive collection of recreational problems based
on a translation of Leurechon’s book, together with many
other problems that he himself had previously collected.
This work appeared posthumously in 1636 under the
title Deliciae Physico-mathematicae oder Mathematische
und Philosophische Erquickstunden. Immensely popular,
Schwenter’s book was enlarged by two supplementary edi-
tions in 1651-53. For some years thereafter Schwenter’s
enlarged edition was the most comprehensive treatise of
its kind, although in 1641-42 the Italian Jesuit Mario
Bettini had issued a two-volume work called Apiaria Uni-
versae Philosophiae Mathematicae in Quibus Paradoxa
et Nova Pleraque Machinamenta Exhibentur, which was
followed in 1660 by a third volume entitled Recreationum
Mathematicarum Apiaria Novissima Duodecim . . . . And
in 1665 one Johann Mohr in Schleswig published an
imitation of Schwenter under the title of Arithmetische
Lustgarten.

In England, somewhat belatedly, William Leybourn, a
mathematics teacher, textbook writer, and surveyor, in

1694, published his Pleasure with Profit: Consisting of

Recreations of Divers Kinds, viz., Numerical, Geometrical,
Mechanical, Statical, Astronomical, Horometrical, Cryp-
tographical, Magnetical, Automatical, Chymical, and His-
torical. The title page further states that the purpose of the
book was to “recreate ingenious spirits and to induce them
to make farther scrutiny into these sublime sciences, and
to divert them from following such vices, to which Youth
(in this Age) are so much inclined.” Much of the volume
is conventional textbook material, for most of Leybourn’s
published works grew out of his teaching.

I8STH AND I9TH CENTURIES

The 18th century saw a continuation of this interest.
Published in England were volumes by Edward Hatton,
Thomas Gent, Samuel Clark, and William Hooper. In
1775 Charles Hutton published five volumes of extracts
from the Ladies’ Diary dealing with “entertaining math-
ematical and poetical parts.” On the Continent there ap-
peared several writers, including: Christian Pescheck, Abat
Bonaventura, the Dutch writer Paul Halcken, and A.H.
Guyot’s four volumes of Nouvelles Récréations physiques
et mathématiques, etc. (1769, 1786). But by far the out-
standing work was that of Jacques Ozanam, the precursor
of books to follow for the next 200 years. First published
in four volumes in 1694, his Récréations mathématique
et physiques went through many editions; based on the
works of Bachet, Mydorge, Leurechon, and Schwenter, it
was later revised and enlarged by Montucla, then trans-
lated into English by Charles Hutton (1803, 1814) and
again revised by Edward Riddle (1840, 1844).

The first half of the 19th century produced only a
moderate number of lesser writers on mathematical recre-
ations, but the second half of the 19th century witnessed
a crescendo of interest, culminating in the outstanding
contributions of Edouard Lucas, C.L. Dodgson (Lewis
Carroll), and others at the turn of the century. Lucas’
four-volume Récréations mathématiques (1882-94) be-
came a classic. The mathematical recreations of Dodgson
included Symbolic Logic and The Game of Logic; Pillow
Problems and A Tangled Tale, 2 vol. (1885-95).

20TH CENTURY

Among the more colourful figures at the turn of the 20th
century were two Americans named Sam Loyd, father
and son. Tremendously successful in making puzzles, the
elder Loyd sold his weekly puzzle column to a national
syndicate for years, and, in addition, created or adapted
hundreds of mechanical puzzles fashioned of cardboard,
wood, and metal that were also financially rewarding.
When Loyd II died in 1934 at the age of 60, it was esti-
mated that he had produced at least 10,000 puzzles.

In Germany, Hermann Schubert published Zwélf Geduld-
spiele in 1899 and the Mathematische Mussestunden (3rd
ed., 3 vol.) in 1907-09. Between 1904 and 1920 Wilhelm
Ahrens published several works, the most significant be-
ing his Mathematische Unterhaltungen und Spiele (2 vol.,
1910) with an extensive bibliography.

Among British contributors, Henry Dudeney, a contribu-
tor to the Strand Magazine, published several very popular
collections of puzzles that have been reprinted from time
to time (1917-67). The first edition of W.W. Rouse Ball’s
Mathematical Recreations and Essays appeared in 1892;
it soon became a classic, largely because of its scholarly
approach. After passing through 10 editions it was revised
by the British professor H.S.M. Coxeter in 1938; it is still
a standard reference.

Outstanding work was that of Maurice Kraitchik, editor
of the periodical Sphinx and author of several well-known
works published between 1900 and 1942.

About the middle third of the 20th century, there was
a gradual shift in emphasis on various topics. Up to that
time interest had focussed largely on such amusements
as numerical curiosities; simple geometric puzzles; arith-
metical story problems; paper folding and string figures;
geometric dissections; manipulative puzzles; tricks with
numbers and with cards; magic squares; those venerable
diversions concerning angle trisection, duplication of the
cube, squaring the circle, as well as the elusive fourth
dimension. By the middle of the century, interest be-

The work
of Ozanam
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gan to swing toward more mathematically sophisticated
topics: cryptograms; recreations involving modular arith-
metic, numeration bases, and number theory; graphs and
networks; lattices, group theory; topological curiosities;
packing and covering; flexagons; manipulation of geomet-
ric shapes and forms; combinatorial problems; probability
theory; inferential problems; logical paradoxes: fallacies of
logic; and paradoxes of the infinite.

Types of games and recreations

ARITHMETIC AND ALGEBRAIC RECREATIONS

Number patterns and curiosities. Some groupings of
natural numbers, when operated upon by the ordinary
processes of arithmetic, reveal rather remarkable patterns,
affording pleasant pastimes. For example:

I X8+1=9 3X37=111 (1)y2= 1
12X8+2=98 6 X 37 =222 (reg= 121
123 X8+3=987 9X37=333 (1112= 12321

1234 X 8 +4=9876 12X 37 =444 (1111)y = 1234321
etc. etc. etc.

Another type of number pleasantry concerns multigrades;
i.e., identities between the sums of two sets of numbers
and the sums of their squares or higher powers—e.g.,

1"+ 6"+ 8"=2"+ 4"+ 9" (for n=1 or 2).

An easy method of forming a multigrade is to start with
a simple equality—e.g., 1 +5= 2+ 4—then add, for ex-
ample, 5 to each term: 6+ 10=7+9. A second-order
multigrade is obtained by “switching sides” and combin-
ing, as shown below:

174 57477+ 97 =27+ 4"+ 6"+ 10" (n =1 or 2).

On each side the sum of the first powers (S,) is 22 and of
the second powers (S,) is 156.

Ten may be added to each term to derive a third-or-
der multigrade:

11"+ 15"+ 17"+ 19"= 12"+ 14"+ 16"+ 20" (n=1 or 2).
Switching sides and combining, as before:

1"+ 57477+ 97+ 127+ 147+ 16" + 20"
=2"4+4"+ 6"+ 10"+ 11"+ 157+ 17"+ 19"
(n=1, 2, or 3).

In this example S, = 84, S, = 1,152, and S, = 17,766.

This process can be continued indefinitely to build multi-
grades of successively higher orders. Similarly, all terms in
a multigrade may be multiplied or divided by the same
number without affecting the equality. Many variations
are possible: for example, palindromic multigrades that
read the same backward and forward, and multigrades
composed of prime numbers.

Other number curiosities and oddities are to be found.
Thus, narcissistic numbers are numbers that can be rep-
resented by some kind of mathematical manipulation of
their digits. A whole number, or integer, that is the sum
of the nth powers of its digits (e.g., 153=1+5+3%) is
called a perfect digital invariant. On the other hand, a
recurring digital invariant is illustrated by:

55: 53+ 5% = 250;
250: 2*+ 5+ 0= 133;
133: 13+ 33+ 33= 55,
(From Mathematics on Vacation, Joseph Madachy; Charles
Scribner’s Sons.)

A variation of such digital invariants is
165,033 = 16*+ 50° + 33°.

Another curiosity is exemplified by a number that is equal
to the nth power of the sum of its digits:

Bl =(8+1y=9%
4913 =(4+9+1+3p=17".

An automorphic number is an integer whose square ends
with the given integer, as (25) =625, and (76)* = 5776.
Strobogrammatic numbers read the same after having
been rotated through 180°; e.g., 69, 96, 1001.

It is not improbable that such curiosities should have
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suggested intrinsic properties of numbers bordering on
mysticism.

Digital problems. The problem of the four n’s calls for
the expression of as large a sequence of integers as possi-
ble, beginning with 1, representing each integer in turn by
a given digit used exactly four times. The answer depends
upon the rules of operation that are admitted. Two partial
examples are shown.

For four lIs:
1=1++—1
2=1+1+1—-1
3=1+4+1+1
4=1+1+1+1
S=(1+1+1)—1
etc

For four 4s:
1=(3)-(2)
2=4+14
3=1+4/J4
4=JH4) -(2)
5=J4 +J4 +4
etc

(In M. Bicknell & V. Hoggatt, “64 Ways to Write 64 Us-
ing Four 4s,” Recreational Mathematics Magazine, No.
14, Jan.—Feb. 1964, p. 13.)

Obviously, many alternatives are possible; e.g.,
7=4+J4+4/4 could also be expressed as 4!/4 + 4/4,
or as 44/4 — 4. The factorial of a positive integer is the
product of all the positive integers less than or equal to
the given integer; e.g., “factorial 4,” or 4! =4 X3 X2 X I.
If the use of factorial notation is not allowed, it is still
possible to express the numbers from 1 to 22 inclusive
with four “4s™; thus 22 = (4 + 4)/.4 + /4. But if the rules
are extended, many additional combinations are possible.

A similar problem requires that the integers be expressed
by using the first m positive integers, m > 3 (“m is greater
than three”) and the operational symbols used in elemen-
tary algebra. For example, using the digits 1, 2, 3, and 4:

2=4-3+2—1
4=\4 +3-2+1
6=y4 +3+2—1

8=V4 +3+2+1
9=4+3+(2-1).

Such problems have many variations; for example, more
than 100 ways of arranging the digits 1 to 9, in order, to
give a value of 100 have been demonstrated.

All of these digital problems require considerable inge-
nuity but involve little significant mathematics.

Cryptarithms. The term “crypt-arithmetic” was intro-
duced in 1931, when the following multiplication problem
appeared in the Belgian journal Sphinx:

ABC

_DE

FEC
DEC
HGBC

The shortened word cryptarithm now denotes mathemat-
ical problems usually calling for addition, subtraction,
multiplication, or division and replacement of the digits
by letters of the alphabet or some other symbols.

An analysis of the original puzzle suggested the general
method of solving a relatively simple cryptarithm:

1. In the second partial product DX A =D, hence A = 1.

2. DXC and E X C both end in C; since for any two digits
1-9 the only multiple that will produce this result is 5 (zero if
both digits are even, 5 if both are odd), C= 5.

3. D and E must be odd. Since both partial products have
only three digits, neither D nor E can be 9. This leaves only
3 and 7. In the first partial product E X B is a number of two
digits, while in the second partial product D X B is a number
of only one digit. Thus E is larger than D, so E=7 and D= 3.

4. Since D X B has only one digit, B must be 3 or less. The
only two possibilities are 0 and 2. B cannot be zero because
7B is a two digit number. Thus B=2.

HS. By completing the multiplication, F= 8, G = 6, and
=4,

6. Answer: 125X 37 =4,625.

Problem
of the
four n’s
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(From 150 Puzzles in Crypt-Arithmetic by Maxey Brooke;
Dover Publications, Inc., New York, 1963. Reprinted through
the permission of the publisher.)
Such puzzles had apparently appeared, on occasion, even
earlier. Alphametics refers specifically to cryptarithms in
which the combinations of letters make sense, as in one
of the oldest and probably best known of all alphametics:

SEND
+ MORE
MONEY

Unless otherwise indicated, convention requires that the
initial letters of an alphametic cannot represent zero, and
that two or more letters may not represent the same digit.
If these conventions are disregarded, the alphametic must
be accompanied by an appropriate clue to that effect.
Some cryptarithms are quite complex and elaborate and
have multiple solutions. Electronic computers have been
used for the solution of such problems.

Paradoxes and fallacies. Mathematical paradoxes and
fallacies have long intrigued mathematicians. A mathe-
matical paradox is a mathematical conclusion so unex-
pected that it is difficult to accept even though every step
in the reasoning is valid. A mathematical fallacy, on the
other hand, is an instance of improper reasoning leading
to an unexpected result that is patently false or absurd.
The error in a fallacy generally violates some principle of
logic or mathematics, often unwittingly. Such fallacies are
quite puzzling to the tyro, who, unless he is aware of the
principle involved, may well overlook the subtly concealed
error. A sophism is a fallacy in which the error has been
knowingly committed, for whatever purpose. If the error
introduced into a calculation or a proof leads innocently
to a correct result, the result is a “howler,” often said to
depend on “making the right mistake.”

Many paradoxes arise from the concepts of infinity and
limiting processes. For example, the infinite series

I+i+i+1+- -
has a continually greater sum the more terms are in-
cluded, but the sum always remains less than 2, although

it approaches nearer and nearer to 2 as more terms are
included. On the other hand, the series

I I o ST

is called divergent: it has no limit, the sum becoming
larger than any chosen value if sufficient terms are taken.
Another paradox is the fact that there are just as many
even natural numbers as there are even and odd numbers
altogether, thus contradicting the notion that “the whole is
greater than any of its parts.” This seeming contradiction
arises from the properties of collections containing an in-
finite number of objects. Since both are infinite, they are
for both practical and mathematical purposes equal.

The so-called paradoxes of Zeno (c. 450 BC) are, strictly
speaking, sophisms. In the race between Achilles and the
tortoise, the two start moving at the same moment, but, if
the tortoise is initially given a lead and continues to move
ahead, Achilles can run at any speed and never catch up.
Zeno’s argument rests on the presumption that Achilles
must first reach the point where the tortoise started, by
which time the tortoise will have moved ahead to an-
other point, and so on. Obviously, Zeno did not believe
what he claimed; his interest lay in locating the error in
his argument. The same observation is true of the three
remaining paradoxes of Zeno, the Dichotomy, “motion is
impossible”; the Arrow, “motionless even while in flight™;
and the Stadium, or “a given time interval is equivalent
to an interval twice as long.” Beneath the sophistry of
these contradictions lie subtle and elusive concepts of
limits and infinity, only completely explained in the 19th
century when the foundations of analysis became more
rigorous and the theory of transfinite numbers had been
formulated.

Common algebraic fallacies usually involve a violation
of one or another of the following assumptions:

1. If a= b, then a/k = b/k, provided k # 0.
2. If a> b, then ka > kb, provided k is positive.
3. If a is nonnegative, then /a2 = +a.

Three examples of such violations follow:
A. Solve: 6x— 18=4x— 12
Factoring: 3(2x — 6) = 2(2x — 6)
Dividing by 2x—6):3=2
B. Since + 1/ —1 =—1/+1, then J+1 /y—1 =
y=1/y=+1, and so (y+I)(y+1)=
(V—1)y—1), hence + 1 =—1

C. Given two positive numbers, a and b:

then, also,
a>—b b>—a
b>—b a>—a
Multiplying: ab > b? ab>a?
Ora>b b>a

Thus a is both greater than b and less than b.
An example of an illegal operation or “lucky boner” is:
E=f=i

Polygonal and other figurate numbers. Among the many
relationships of numbers that have fascinated man are
those that suggest (or were derived from) the arrangement
of points representing numbers into series of geometrical
figures. Such numbers, known as figurate or polygonal
numbers, appeared in 15th-century arithmetic books and
were probably known to the ancient Chinese; but they
were of especial interest to the ancient Greek mathemati-
cians. To the Pythagoreans (c¢. 500 Bc), numbers were of
paramount significance; everything could be explained by
numbers, and numbers were invested with specific char-
acteristics and personalities. Among other properties of
numbers, the Pythagoreans recognized that numbers had
“shapes.” Thus, the triangular numbers, 1, 3, 6, 10, 15,
21, etc., were visualized as points or dots arranged in the

shape of a triangle.
eReXe)
&)
® o\Q
9

oo
N
4
(3+6)

(1+3)

Figure 1: Square numbers shown formed from consecutive
triangular numbers.
From The Number of Things: Pythagoras, Geometry and Humming Strings

by Evans G. Valens, copyright © 1964 by Evans G. Valens; published
by EP Dutton & Co., Inc., and used with their permission

Square numbers are the squares of natural numbers, such
as 1, 4, 9, 16, 25, etc., and can be represented by square
arrays of dots, as shown in Figure 1. Inspection reveals

that the sum of any two adjacent triangular numbers is
always a square number.

Figure 2: Oblong numbers formed by doubling triangular numbers.
From The Number of Things: Pythagoras, y and Hi Strings
by Evans G. Valens, copyright © 1964 by Evans G. Valens; published

by EP. Dutton & Co,, Inc., and used with their permission

Oblong numbers are the numbers of dots that can be
placed in rows and columns in a rectangular array, each
row containing one more dot than each column. The
first few oblong numbers are 2, 6, 12, 20, and 30. This
series of numbers is the successive sums of the series of
even numbers or the products of two consecutive num-
bers: 2=1:2; 6=2:3=2+4; 12=3-4=2+4+6;
20=4-5=2+4+ 6+ 8; etc. An oblong number also is
formed by doubling any triangular number (see Figure 2).
The gnomons include all of the odd numbers; these can
be represented by a right angle, or a carpenter’s square,
as illustrated in Figure 3. Gnomons were extremely use-

[ ]
[ ] e e L ® 00
1 3 5 7 9
Figure 3: Odd numbers shown as gnomons.
From The Number of Things: Pythagoras, Geometry and Humming Strings by Evans G

Valens, copyright © 1964 by Evans G. Valens; published by E.P. Dutton & Co.. Inc., and
used with their permission
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Figure 4: Addition of gnomons to squares to form larger squares.
From The Number of Things: Pythagoras, Geometry and Humming Strings

by Evans G. Valens, copyright © 1964 by Evans G. Valens; published

by EP Dutton & Co., Inc., and used with their permission

ful to the Pythagoreans. They could build up squares by
adding gnomons to smaller squares and from such a figure
could deduce many interrelationships: thus 12+ 3 =22,
224+5=32 etc; or 1+3+5=32 1+3+5+7=4%
1+3+4+5+7+9=52 etc.; (see Figure 4). Indeed, it is
quite likely that Pythagoras first realized the famous re-
lationship between the sides of a right triangle, repre-
sented by @ + b? = ¢2, by contemplating the properties of
gnomons and square numbers, observing that any odd
square can be added to some even square to form a third
square. Thus

32+ 42=352 where 3?=4+5;
524 122= 132, where 52= 12+ 13;

and, in general, @> + b* = ¢?, where a*>=b+c. This is a
special class of Pythagorean triples (see below).

Besides these, the Greeks also studied numbers having
pentagonal, hexagonal, and other shapes. Many relation-
ships can be shown to exist between these geometric pat-
terns and algebraic expressions.

Polygonal numbers constitute a subdivision of a class of
numbers known as figurate numbers. Examples include
the arithmetic sequences

and 15035 55 Tos o 5 57 (@2r— 1)s

When new series are formed from the sums of the terms
of these series, the results are, respectively,

1,3,6,10,...
1,4,9,16,....

These series are not arithmetic sequences but are seen to
be the polygonal triangular and square numbers. Polyg-
onal number series can also be added to form three-
dimensional figurate numbers; these sequences are called
pyramidal numbers.

The significance of polygonal and figurate numbers lies
in their relation to the modern theory of numbers. Even
the simple, elementary properties and relations of numbers
often demand sophisticated mathematical tools. Thus, it
has been shown that every integer is either a triangular
number, the sum of two triangular numbers, or the sum of
three triangular numbers; e.g., 8=1+1+6,42 =6+ 36,
43=15+28,44=6+ 10+ 28.

Pythagorean triples. The study of Pythagorean triples
as well as the general theorem of Pythagoras leads to many
unexpected byways in mathematics. A Pythagorean triple
is formed by the measures of the sides of an integral right
triangle; i.e., any set of three positive integers such that
a*+ b*= 2 If q, b, and c are relatively prime—i.e., if no
two of them have a common factor—the set is a primitive
Pythagorean triple.

A formula for generating all Pythagorean triples is

and

a=p*—¢,b=2pg,c=p*+¢,

in which p and q are relatively prime, p and g are neither
both even nor both odd, and p > g. By choosing p and ¢
appropriately, for example, primitive Pythagorean triples
such as the following are obtained:

@ b (c)
P g pP—q* 2pq P*+q*

2 1 3 4 5
3 2 5 12 13

The only primitive triple that consists of consecutive inte-
gersis 3, 4, 5.
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Certain characteristic properties are of interest:

Either a or b is divisible by 3.

Either a or b is divisible by 4.

Either a or b or c is divisible by 5.

The product of a, b, and c is divisible by 60.
One of the quantities a, b, a+ b, a— b is divisi-
ble by 7.

It is also true that if n is any integer, then 2n + 1, 2n2 + 2n,
and 2n? + 2n + 1 form a Pythagorean triple.

Some of the properties of Pythagorean triples were known
to the ancient Greeks; e.g., that the hypotenuse of a prim-
itive triple is always an odd integer. It is now known that,
for an odd integer R to be the hypotenuse of a primitive
triple, a necessary and sufficient condition is that every
prime divisor of R be of the type 4k + 1, in which k is a
positive integer.

Perfect numbers and Mersenne numbers. Most num-
bers are either “abundant” or “deficient.” In an abundant
number, the sum of its proper divisors (i.e., including 1
but excluding the number itself) is greater than the num-
ber; in a deficient number, the sum of its proper divisors is
less than the number. A perfect number is an integer that
equals the sum of its proper divisors. For example, 24 is
abundant, its divisors giving a sum of 36; 32 is deficient,
giving a sum of 31. The number 6 is a perfect number, since
1+2+3=6; so is 28, since 1 +2+4+7+ 14=28.
The next two perfect numbers are 496 and 8,128. The first
four perfect numbers were known to the ancients. Indeed,
Euclid suggested that any number of the form 27'(2"— 1)
is a perfect number whenever 2” — 1 is prime, but it was
not until the 18th century that the Swiss mathematician
Leonhard Euler proved that every even perfect number
must be of the form 27~'(2" — 1), where 2" — 1 is a prime.

A number of the form 2" — 1 is called a Mersenne num-
ber after the French mathematician Marin Mersenne; it
may be prime (i.e., having no factor except itself or 1)
or composite (composed of two or more prime factors).
A necessary though not sufficient condition that 27— 1
be a prime is that » be a prime. Thus, all even perfect
numbers have the form 27-'(2”— 1) where both n and
27— 1 are prime numbers. Until comparatively recently,
only 12 perfect numbers were known. In 1876 the French
mathematician Edouard Lucas found a way to test the
primality of Mersenne numbers. By 1952 the U.S. math-
ematician Raphael M. Robinson had applied Lucas’ test
and, by means of electronic digital computers, had found
the Mersenne primes for n= 521; 607; 1,279; 2,203; and
2,281, thus adding five more perfect numbers to the list.
By 1989 there were more than 30 known perfect numbers.

It is known that to every Mersenne prime there corre-
sponds an even perfect number and vice versa. But two
questions are still unanswered: the first is whether there
are any odd perfect numbers; and the second is whether
there are infinitely many perfect numbers.

Many remarkable properties are revealed by perfect num-
bers. All perfect numbers, for example, are triangular.
Also, the sum of the reciprocals of the divisors of a perfect
number (including the reciprocal of the number itself) is
always equal to 2. Thus

for 6:1 +i+i+1=2
and for 28: 4 +1 +4 +41 + L +1L =2

Fibonacci numbers. In 1202 the mathematician Leo-
nardo of Pisa, also called Fibonacci, published an in-
fluential treatise, Liber abaci. It contained the following
recreational problem: “How many pairs of rabbits can be
produced from a single pair in one year if it is assumed
that every month each pair begets a new pair which from
the second month becomes productive?” Straightforward
calculation generates the following sequence:

Month: 123456 7 8 91011 12
No.of pairs: 1 12358 13 21 34 55 89 144

The second row represents the first 12 terms of the se-
quence now known by Fibonacci’s name, in which each
term (except the first two) is found by adding the two
terms immediately preceding; in general, x, = x,_, + x,_,,
a relation that was not recognized until about 1600.

bl ol ol ol o

Properties
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numbers
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The the entire segment, yields the so-called Golden Section. an
Golden important concept in both ancient and modern artistic and
Section architectural design. Thus, a rectangle the sides of which -

Over the years, especially in the middle decades of the
20th century, the properties of the Fibonacci numbers have
been extensively studied, resulting in a considerable liter-
ature. Their properties seem inexhaustible: for example,
Xy X,oy =X,>+ (—1). Another formula for generating
the Fibonacci numbers is attributed to Edouard Lucas:

5 (55

Geometric fallacies and paradoxes. Some geometric fal-
lacies include “proofs™ (1) that every triangle is isosceles
(i.e., has two equal sides); (2) that every angle is a right an-
gle: (3) that if ABCD is a quadrilateral in which AB = CD,
then AD must be parallel to BC; and (4) that every point
in the interior of a circle lies on the circle.

The explanations of fallacious proofs in geometry usually
include one or another of the following: faulty construc-
tion: violation of a logical principle, such as assuming the

The ratio (y5+1): 2=1.618 ..., designated as ®, is truth of a converse, or confusing partial inverses or con-
known as the golden number; the ratio (5 — 1): 2, the Vverses: misinterpretation of a definition, or failing to take
reciprocal of ®, is equal to 0.618 . ... Both these ratios note of “necessary and sufficient” conditions: too great

are related to the roots of x> — x— 1 =0, an equation de-
rived from the Divine Proportion of the 15th-century Ital-
ian mathematician Luca Pacioli, namely, a/b= b/a + b),
when a < b, by setting x = h/a. In short, dividing a seg-
ment into two parts in mean and extreme proportion, so
that the smaller part is to the larger part as the larger is to

are in the approximate ratio of 3: 5 (®'=0.618...). or
8:5(®=1.618...), is presumed to have the most pleas-
ing proportions, aesthetically speaking.

Raising the golden number to successive powers gener-
ates the sequence that begins as follows:

O =(/5+1))2 @®=@3J5+ 7)2
D=(J5 +3)2 D =(5/5 +11)2
O3 =(2J5 +4)2 D*=(8/5 +18)/2

In this sequence the successive coefficients of the radical
V3 are Fibonacci’s 1, 1, 2, 3. 5. 8, while the successive sec-
ond terms within the parentheses are the so-called Lucas
sequence: |, 3, 4, 7, 11, 18. The Lucas sequence shares
the recursive relation of the Fibonacci sequence; that is,
Xy = Xy + Xy

If a golden rectangle ABCD is drawn and a square ABEF
is removed, the remaining rectangle ECDF is also a golden
rectangle. If this process is continued and circular arcs
are drawn, the curve formed approximates the logarith-
mic spiral, a form found in nature (see Figure 5). The

E

dependence upon diagrams and intuition; being trapped
by limiting processes and deceptive appearances.
Impossible figures. At first glance, drawings such as
those in Figure 6 appear to represent plausible three-di-
mensional objects, but closer inspection reveals that they

Schaap s bookshell

drawing

on Swedish

something 1o make

postage stamp

Figure 6: Impossible figures.

cannot; the representation is flawed by faulty perspective,
false juxtaposition, or psychological distortion. Among the
first to produce these drawings—also called undecidable
figures—was Oscar Reutersvard of Sweden, who made
them the central features of a set of Swedish postage
stamps.

In 1958 L.S. Penrose, a British geneticist, and his son
Roger Penrose, a mathematical physicist, introduced the
undecidable figures called strange loops. One of these is
the Penrose square stairway (Figure 7), which one could
apparently traverse in either direction forever without get-

A D
F

Figure 5: Golden rectangles and the logarithmic spiral.

logarithmic spiral is the graph of the equation r= k®, in
polar coordinates, where k = ®**. The Fibonacci numbers
are also exemplified by the botanical phenomenon known
as phyllotaxis. Thus, the arrangement of the whorls on a
pinecone or pineapple, of petals on a sunflower, and of
branches from some stems follows a sequence of Fibonacci
numbers or the series of fractions

1 1 3 5 .3
Ts 2 S» &> 13+ CtC.
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GEOMETRIC AND TOPOLOGICAL RECREATIONS

Optical illusions. The creation and analysis of optical
illusions may involve mathematical and geometric prin-
ciples such as the proportionality between the areas of
similar figures and the squares of their linear dimensions.
Some involve physiological or psychological considera-
tions, such as the fact that, when making visual compar-
isons, relative lengths are more accurately perceived than
relative areas.

For treatment of optical illusions and their illusory ef-
fects, including unorthodox use of perspective, distorted
angles, deceptive shading, unusual juxtaposition, equivocal
contours or contrasts, colour effects, chromatic aberration,
and afterimages, see the article PERCEPTION.

Figure 7: The endless stair.



ting higher or lower. Strange loops are important features
of some of M.C. Escher’s lithographs, including “Ascend-
ing and Descending™ (1960) and “Waterfall” (1961). The
concept of the strange loop is related to the idea of infin-
ity and also to logical paradoxes involving self-referential
statements, such as that of Epimenides (see below Logi-
cal paradoxes).

Pathological curves. A mathematical curve is said to
be pathological if it lacks certain properties of continu-
ous curves. For example, its tangent may be undefined
at some—or indeed any—point; the curve may enclose a
finite area but be infinite in length; or its curvature may
be undefinable. Some of these curves may be regarded
as the limit of a series of geometrical constructions; their
lengths or the areas they enclose appear to be the limits
of sequences of numbers. Their idiosyncrasies constitute
paradoxes rather than optical illusions or fallacies.

Von Koch’s snowflake curve, for example, is the figure
obtained by trisecting each side of an equilateral triangle
and replacing the centre segment by two sides of a smaller
equilateral triangle projecting outward, then treating the
resulting figure the same way, and so on. The first two
stages of this process are shown in Figure 8. As the con-

83

Figure 8: Von Koch's snowflake curve.

struction proceeds, the perimeter of the curve increases
without limit, but the area it encloses does approach an
upper bound, which is ¥s the area of the original triangle.

In seeming defiance of the fact that a curve is “one-
dimensional” and thus cannot fill a given space, it can be
shown that the curve produced by continuing the stages in
Figure 9, when completed, will pass through every point
in the square. In fact, by similar reasoning, the curve can
be made to fill completely an entire cube.

From E Kasner and J Newman, Mathematics and the Imagination
(copyright © 1940 by Edward Kasner and James R Newman).
reprinted by permission of Simon and Schuster. Inc

Figure 9: A space-filling curve (see text).

The Sierpinski curve, the first few stages of which are
shown in Figure 10, contains every point interior to a
square, and it describes a closed path. As the process of
forming the curve is continued indefinitely, the length of
the curve approaches infinity, while the area enclosed by
it approaches %> that of the square.

A fractal curve, loosely speaking, is one that retains the
same general pattern of irregularity regardless of how much
it is magnified; von Koch’s snowflake is such a curve. At
each stage in its construction, the length of its perime-
ter increases in the ratio of 4 to 3. The mathematician
Benoit Mandelbrot has generalized the term dimension,
symbolized D, to denote the power to which 3 must be
raised to produce 4; that is, 3 =4. The dimension that
characterizes von Koch’s snowflake is therefore log 4/log
3, or approximately 1.26.

Beginning in the 1950s Mandelbrot and others have in-
tensively studied the self-similarity of pathological curves,
and they have applied the theory of fractals in mod-
elling natural phenomena. Random fluctuations induce
a statistical self-similarity in natural patterns; analysis of
these patterns by Mandelbrot’s techniques has been found
useful in such diverse fields as fluid mechanics, geomor-
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Figure 10: The Sierpinski curve.

phology, human physiology, economics, and linguistics.
Specifically, for example, characteristic “landscapes” re-
vealed by microscopic views of surfaces in connection with
Brownian movement, vascular networks, and the shapes
of polymer molecules are all related to fractals.

Mazes. A maze having only one entrance and one exit
can be solved by placing one hand against either wall and
keeping it there while traversing it; the exit can always be
reached in this manner, although not necessarily by the
shortest path. If the goal is within the labyrinth, the “hand-
on-wall” method will also succeed, provided that there is
no closed circuit; i.e., a route that admits of complete
traverse back to the beginning (Figure 11).

From Martin Gardner, The Second Scientific American Book of

Mathematical Puzzles and Diversions (copynght © 1961 by Martin
Gardner). reprinted by permission of Simon and Schuster. Inc

[ —
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Figure 11: Examples of mazes.
(Left) “Simply connected” maze. (Right) “Multiply connected”
maze (see text).

If there are no closed circuits—i.e., no detached walls—
the maze is “simply connected”; otherwise the maze is
“multiply connected.” A classic general method of “thread-
ing a maze” is to designate a place where there is a choice
of turning as a node; a path or node that has not yet been
entered as a “new” path or node; and one that has already
been entered as an “old” path or node.

The procedure is as follows:

1. Never traverse a path more than twice.

2. When arriving at a new node, select either path.

3. When arriving at an old node or at a dead end by a
new path, return by the same path.

4. When arriving at an old node by an old path, select
a new path, if possible; otherwise, an old path.

Although recreational interest in mazes has diminished,
two areas of modern science have found them to be of
value: psychology and communications technology. The
former is concerned with learning behaviour, the latter
with improved design of computers.

Geometric dissections. Geometric dissection problems
involve the cutting of geometric figures into pieces that can
be arranged to form other geometric figures; for example,
cutting a rectangle into parts that can be put together in
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Theory
of equi-
decom-
posable
figures

the form of a square and vice versa. Interest in this area
of mathematical recreations began to manifest itself to-
ward the close of the 18th century when Montucla called
attention to this problem. As the subject became more
popular, greater emphasis was given to the more general
problem of dissecting a given polygon of any number of
sides into parts that would form another polygon of equal
area. Then, in the early 20th century, interest shifted to
finding the minimum number of pieces required to change
one figure into another.

According to a comprehensive theory of equidecompos-
able figures that was outlined in detail about 1960, two
polygons are said to be equidecomposable if it is possible
to dissect, or decompose, one of them into a finite number
of pieces that can then be rearranged to form the second
polygon. Obviously, the two polygons have equal areas.

According to the converse theorem, if two polygons have
equal areas, they are equidecomposable.’

In the method of complementation, congruent parts are
added to two figures so as to make the two new figures
congruent. It is known that equicomplementable figures
have equal areas and that, if two polygons have equal
areas, they are equicomplementable. As the theory ad-
vanced, the relation of equidecomposability to various
motions such as translations, central symmetry, and, in-
deed, to groups of motions in general, was explored.
Studies were also extended to the more difficult questions
of dissecting polyhedra.

On the “practical” side, the execution of a dissection,
such as converting the Greek cross into a square (Fig-
ure 12), may require the use of ingenious procedures,
some of which have been described by H. Lindgren (see
Bibliography).

Figure 12: Greek cross converted by dissection into a square.
From The Number of Things: Pythagoras, Geometry and Humming Strings

by Evans G Valens, copyright © 1964 by Evans G Valens. published by
EP Dutton & Co , Inc, and used with therr permission

A quite different and distinctly modern type of dissection
deserves brief mention, the so-called squaring the square,
or squared rectangles. Thus, the problem of subdividing
a square into smaller squares, no two of which are alike,
which was long thought to be unsolvable, has been solved
by the means of network theory. In this connection, a

From Martin Gardner. The Second Scientific American Book of
Mathematical Puzzles and Diversions (copynght © 1961 by Martin
Gardner), reprinted by permission of Simon and Schuster, Inc
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Figure 13: Squared rectangle (see text).

squared rectangle is a rectangle that can be dissected into
a finite number of squares; if no two of these squares
are equal, the squared rectangle is said to be perfect. The
order of a squared rectangle is the number of constituent
squares. It is known that there are no perfect rectangles of
orders less than 9, and that there are exactly two perfect
rectangles of order 9. (One of these is shown as Figure 13.)
The dissection of a square into unequal squares, deemed
impossible as early as 1907, was first reported in 1939.

Graphs and networks. The word graph may refer to the
familiar curves of analytic geometry and function theory,
or it may refer to simple geometric figures consisting of
points and lines connecting some of these points; the latter
are sometimes called linear graphs, although there is little
confusion within a given context. Such graphs have long
been associated with puzzles.

If a finite number of points are connected by lines (Fig-
ure 14A), the resulting figure is a graph; the points, or
corners, are called the vertices, and the lines are called
the edges. If every pair of vertices is connected by an
edge, the graph is called a complete graph (Figure 14B).

A B

®

d
Figure 14: Examples of linear graphs.
(A) Graph. (B) Complete graphs. (C) Nonplanar graph. (D)
Nonplanar graph of (C) changed to equivalent planar graph.

A planar graph is one in which the edges have no inter-
section or common points except at the edges. (It should
be noted that the edges of a graph need not be straight
lines.) Thus a nonplanar graph can be transformed into
an equivalent, or isomorphic, planar graph, as in Figures
14C and 14D. An interesting puzzle involves the problem
of the three wells. Here (Figure 15) A, B, and C represent
three neighbours’ houses, and R, S, and T three wells. It

From Graphs and Their Uses. by Oystein Ore Copyright © 1963
by Yale University Reprinted by permission of Random House, Inc

R S T S T

Figure 15: Three wells problem (see text).

is desired to have paths leading from each house to each
well, allowing no path to cross any other path. The proof
that the problem is impossible depends on the so-called
Jordan curve theorem that a continuous closed curve in
a plane divides the plane into an interior and an exterior
region in such a way that any continuous line connecting
a point in the interior with a point in the exterior must
intersect the curve. Planar graphs have proved useful in
the design of electrical networks.

A connected graph is one in which every vertex, or point
(or, in the case of a solid, a corner), is connected to every
other point by an arc; an arc denotes an unbroken suc-

Problem

of the three

wells
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cession of edges. A route that never passes over an edge
more than once, although it may pass through a point any
number of times, is called a path.

Modern graph theory (in the sense of linear graphs) had
its inception with the work of Euler in connection with
the Konigsberg bridge problem and was, for many years,
associated with curves now called Eulerian paths; i.e., fig-
ures that can be drawn without lifting the pencil from the
paper. The city of Konigsberg (now Kaliningrad) embraces
the banks and an island of the forked Pregel (Pregolya)
River; seven bridges span the different branches. The
problem was: Could a person leave home, take a walk,
and return, crossing each bridge just once? Euler showed
why it is impossible.

Briefly stated, Euler’s principles (which apply to any
closed network) are as follows:

1. The number of even points—i.e., those in which an
even number of edges meet—is of no significance.

2. The number of odd points is always even; this in-
cludes the case of a network with only even points.

3. If there are no odd points, one can start at any point
and finish at the same point.

4. If there are exactly two odd points, one can start at
either of the odd points and finish at the other odd point.

5. If there are more than two odd points, the network
cannot be traced in one continuous path; if there are 2n
odd points and no more, it can be traced in n separate
paths.

Thus Figures 16B and 16C can be traversed by Eulerian
paths; Figures 16D and 16E cannot; Figure 16F shows a
network corresponding to the Konigsberg bridge problem,
in which the points represent the land areas and the edges
the seven bridges.

i
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Figure 16: lllustrations of Euler’s principles.

(A) Kdnigsberg bridge problem. (B) and (C) Eulerian networks.
(D) and (E) Non-Eulerian networks. (F) Network corresponding
to Konigsberg bridge problem.

C
E

Networks are related to a variety of recreational problems
that involve combining or arranging points in a plane
or in space. Among the earliest was a puzzle invented
by an Irish mathematician, Sir William Rowan Hamilton
(1859), which required finding a route along the edges of a
regular dodecahedron that would pass once and only once
through every point. In another version, the puzzle was
made more convenient by replacing the dodecahedron by
a graph isomorphic to the graph formed by the 30 edges
of the dodecahedron (Figure 17). A Hamilton circuit is
one that passes through each point exactly once but does
not, in general, cover all the edges; actually, it covers
only two of the three edges that intersect at each vertex.
The route shown in heavy lines is one of several possible
Hamilton circuits.

Graph theory, being a branch of mathematics known as
combinatorial topology, lends itself to a variety of problems
involving combinatorics: for example, designing a network
to connect a set of cities by railroads or by telephone
lines; planning city streets or traffic patterns; matching
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Figure 17: Hamilton circuit.
From Martin Gardner, The Scientitic American Book of

Mathematical Puzzles and Diversions (copyright © 13953 by Martin
Gardner), reprinted by permission of Simon and Schuster, Inc

jobs with applicants; arranging round-robin tournaments
such that every team or individual meets every other team
or individual.

Map-colouring problems. Although geographers have
long known that maps depicting subdivisions of areas can
be coloured in such a way that any two subdivisions
having a common boundary show different colours and
no more than four distinct colours need be used, the
celebrated “four-colour map problem” bears little or no
relation, historically, to cartography. The mathematical
question was originally framed in 1850 and publicized in
1878. Essentially, the problem is: How many colours are
needed to colour any map so that no two regions sharing
a common border (edge) will have the same colour? Are
four colours both necessary and sufficient? In short, is it
possible to construct a map for which five colours are
necessary? No one was sure until 1977, when a group
of mathematicians proved that four colours are sufficient
for every possible configuration. The proof occupied 170
pages of text and diagrams derived from more than 1,000
hours of calculations on a large electronic computer; it is
treated in more detail in the article COMBINATORICS.

Flexagons. A flexagon is a polygon constructed from a
strip of paper or thin metal foil in such a way that the
figure possesses the property of changing its faces when it
is flexed. First discussed in 1939, flexagons have become
a fascinating mathematical recreation. One of the simplest
flexagons is the trihexaflexagon, made by cutting a strip of
suitable material and marking off 10 equilateral triangles.
By folding appropriately several times and then gluing the
last triangle onto the reverse side of the first triangle, the
resulting model may be flexed so that one of the faces
disappears and another face takes its place.

MANIPULATIVE RECREATIONS

Puzzles involving configurations. One of the earliest
puzzles and games that require arranging counters into
some specified alignment or configuration was Lucas’ Puz-
zle: in a row of seven squares, each of the three squares
at the left end is occupied by a black counter, each of
the three squares at the right end is occupied by a white
counter, and the centre square is vacant. The object is to
move one counter at a time until the squares originally
occupied by white counters are occupied by black, and
vice versa; black counters can be moved only to the right
and white only to the left. A counter may move to an
adjacent vacant square or it may jump one counter of the
other colour to occupy a vacant square. The puzzle may
be enlarged to any number of counters of each colour.
For n counters of each kind the number of required
moves is n(n + 2).

A similar puzzle uses eight numbered counters placed on
nine positions. The aim is to shift the counters so that
they will appear in reverse numerical order; only single
moves and jumps are permitted.

Well known, but by no means as trivial, are games for
two players, such as Ticktacktoe and its more sophisti-
cated variations, one of which calls for each player to
begin with three counters (3 black, 3 white); the first

The
four-colour
problem

Lucas’
Puzzle

Tick-
tacktoe
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player places a counter in any cell, except the center cell,
of a 3 X 3 diagram; the players then alternate until all the
counters are down. If neither has won by getting three in
a row, each, in turn, is permitted to move a counter to an
adjacent square, moving only horizontally or vertically.
Achieving three in a row constitutes a win. There are
many variations. The game can be played on a 4 X 4 dia-
gram, each player starting with four counters; sometimes
diagonal moves are permitted. Another version is played
on a 5 X 5 pattern. Yet another interesting modification,
popular in Europe, is variously known as Mill or Nine
Men’s Morris, played with counters on a board consisting
of three concentric squares and eight transversals.

Another game of this sort is played on a diamond-shaped
board of tessellated hexagons, usually 11 on each edge,
where by “tessellated” we mean fitted together like tiles to
cover the board completely. Two opposite edges of the dia-
mond are designated “white™; the other two sides, “black.”
Each player has a supply of black or white counters. The
players alternately place a piece on any vacant hexagon;
the object of the game is for each player to complete an
unbroken chain of his pieces between the sides designating
his colour. Though the game does not end until one of
the players has made a complete chain, it may meander
across the board; it cannot end in a draw because the only
way one player can block the other is by completing his
own chain. The game was created by Piet Hein in 1942
in Denmark, where it quickly became popular under the
name of Polygon. It was invented independently in the
United States in 1948 by John Nash, and a few years later
one version was marketed under the name of Hex.

In addition to the aforementioned varieties of a class of
games that can be loosely described as “three in a row”
or “specified alignment,” many others also exist, such as
three- and four-dimensional Ticktacktoe and even a com-
puter Ticktacktoe. The game strategy in Ticktacktoe is by
no means simple; an excellent mathematical analysis is
given by F. Schuh (see Bibliography).

Chessboard problems. Recreational problems posed
with regard to the conventional chessboard are legion.
Among the most widely discussed is the problem of how
to place eight queens on a chessboard in such a way
that none of the queens is attacking any other queen:
the problem interested the great German mathematician
C.F. Gauss (c. 1850). Another group of problems has to
do with the knight’s tour; in particular, to find a closed
knight’s tour that ends at the starting point, that does not
enter any square more than once, but that passes through
all the squares in one tour. Problems of the knight’s tour
are intimately connected with the construction of magic
squares. Other chessboard problems are concerned with
determining the relative values of the various chess pieces;
finding the maximum number of pieces of any one type
that can be put on a board so that no one piece can take
any other; finding the minimum number of pieces of any
one type that can be put on a board so as to command all
cells; and how to place 16 queens on a board so that no
three of them are in a straight line.

The Fifteen Puzzle. One of the best known of all puz-
zles is the Fifteen Puzzle, which was invented by Sam
Loyd the elder about 1878. It is also known as the Boss
Puzzle, Jeu de Taquin, and Diablotin. It became popular
all over Europe almost at once. It consists essentially of
a shallow square tray that holds 15 small square counters
numbered from 1| to 15, and one square blank space.
With the 15 squares initially placed in random order and
with the blank space in the lower right-hand corner, the
puzzle is to rearrange them in numerical order by sliding
only, with the blank space ending up back in the lower
right-hand corner. It may overwhelm the reader to learn
that there are more than 20,000,000,000,000 possible dif-
ferent arrangements that the pieces (including the blank
space) can assume. But in 1879 two American mathe-
maticians proved that only one-half of all possible initial
arrangements, or about 10,000,000,000,000, admitted of
a solution. The mathematical analysis is as follows. Basi-
cally, no matter what path it takes, as long as it ends its
journey in the lower right-hand corner of the tray, any
numeral must pass through an even number of boxes. In

the normal position of the squares (Figure 18A), regarded
row by row from left to right, each number is larger than
all the preceding numbers; i.c., no number precedes any
number smaller than itself. In any other than the normal
arrangement, one or more numbers will precede others
smaller than themselves. Every such instance is called an
inversion. For example, in the sequence 9, 5, 3, 4, the
9 precedes three numbers smaller than itself and the S
precedes two numbers smaller than itself, making a total
of five inversions. If the total number of «// the inversions
in a given arrangement is even, the puzzle can be solved
by bringing the squares back to the normal arrangement;
if the total number of inversions is odd, the puzzle cannot
be solved. Thus, in Figure 18B there are two inversions.

B C

T T T T ] %
1.2/3/4 1124
b . + —+— b+ —+ 4
5 6 78 8 5 6
4+ 4o DS
910 1112 9 1011
- — 3 —9 -+

|
15 13| 14 13|15 14

Figure 18: (A) Fifteen Puzzle with no inversions. (B) With two
inversions. (C) With five inversions.

and the puzzle can be solved; in Figure 18C there are five
inversions, and the puzzle has no solution. Theoretically,
the puzzle can be extended to a tray of m X n spaces with
(mn — 1) numbered counters.

The Tower of Hanoi. The puzzle of the Tower of Hanoi
is believed to have been originated in 1883 by Lucas,
under the name of M. Claus. Ever popular, made of wood
or plastic, it still can be found in toy shops. It consists
essentially of three pegs fastened to a stand and of eight
circular disks. each having a hole in the centre. The disks,
all of different radii, are initially placed (see Figure 19) on

A

Figure 19: Tower of Hanoi.

one of the pegs, with the largest disk on the bottom and
the smallest on top: no disk rests upon one smaller than
itself. The task is to transfer the individual disks from one
peg to another so that no disk ever rests on one smaller
than itself, and, finally, to transfer the tower: i.e., all the
disks in their proper order, from their original peg to one
of the other pegs. It can be shown that for a tower of n
disks, there will be required 2” — | transfers of individual
disks to shift the tower completely to another peg. Thus
for 8 disks, the puzzle requires 2% — I, or 255 transfers.
If the original “needle™ (peg) was a tower with 64 disks,
the number of transfers would be 264 — |, or 18,446,744, -
073,709,551,615; this is exactly the same number required
to fill an 8 X 8 checkerboard with grains of wheat, 1 on
the first square, 2 on the second. 4 on the next. then
8, 16, 32, etc.

Polyominoes. The term polyomino was introduced in
1953 as a jocular extension of the word domino. A poly-
omino is a simply connected set of equal-sized squares,
each joined to at least one other along an edge. The sim-
pler polyomino shapes are shown in Figure 20A. Some-
what more fascinating are the pentominoes, of which there
are exactly 12 forms (Figure 20B). Asymmetrical pieces.
which have different shapes when they are flipped over,
are counted as one.

The number of distinct polyominoes of any order is a
function of the number of squares in each, but, as vet,
no general formula has been found. It has been shown
that there are 35 types of hexominoes and 108 types of
heptominoes, if the dubious heptomino with an interior
“hole” is included.

Manipulat-
ing squares
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Figure 20: Shapes made of squares.
(A) Monomino with simple polyominoes. (B) Pentominoes.
(C) Heptomino with interior “hole.”

From Martin Gardner, The Scientific American Book of Mathematical Puzzles and Diversions
(copyright © 1959 by Martin Gardner), reprinted by permission of Simon and Schuster, Inc

Recreations with polyominoes include a wide variety of
problems in combinatorial geometry, such as forming de-
sired shapes and specified designs, covering a chessboard
with polyominoes in accordance with prescribed condi-
tions, etc. Two illustrations may suffice.

The 35 hexominoes, having a total area of 210 squares,
would seem to admit of arrangement into a rectangle
3X70,5X42, 6 X35, 7X30, 10X 21, or 14 X 15; how-
ever, no such rectangle can be formed.

Can the 12 pentominoes, together with one square
tetromino, form an 8 X 8 checkerboard? A solution of the
problem was shown around 1935. It is not known how
many solutions there are, but it has been estimated to be
at least 1,000. In 1958, by use of a computer, it was shown
that there are 65 solutions in which the square tetromino
is exactly in the centre of the checkerboard.

Soma Cubes. Piet Hein of Denmark, also known for
his invention of the mathematical games known as Hex
and Tac Tix, stumbled upon the fact that all the irregular
shapes that can be formed by combining three or four
congruent cubes joined at their faces can be put together
to form a larger cube. There are exactly seven such shapes,
called Soma Cubes; they are shown in Figure 21. No two
shapes are alike, although the fifth and sixth are mirror
images of each other. The fact that these seven pieces
(comprising 27 “unit” cubes) can be reassembled to form
one large cube is indeed remarkable.

Many interesting solid shapes can be formed from the
seven Soma Cubes, shapes resembling, for example, a sofa,
a chair, a castle, a tunnel, a pyramid, and so on. Even the
assembling of the seven basic pieces into a large cube can
be done in more than 230 essentially different ways.

As a recreation, the Soma Cubes are fascinating. With
experience, many persons find that they can solve Soma
problems mentally. Psychologists who have used them
find that the ability to solve Soma problems is roughly
correlated with general intelligence, although there are
some strange anomalies at both ends of the distribution of
intelligence. In any event, people playing with the cubes
do not appear to want to stop; the variety of interesting
structures possible seems endless.

Coloured squares and cubes. There is a wide variety
of puzzles involving coloured square tiles and coloured
cubes. In one, the object is to arrange the 24 three-colour
patterns, including repetitions, that can be obtained by
subdividing square tiles diagonally, using three different
colours, into a 4 X 6 rectangle so that each pair of touch-
ing edges is the same colour and the entire border of the
rectangle is the same colour.

More widely known perhaps is the 30 Coloured Cubes
Puzzle. If six colours are used to paint the faces there result
2,226 different combinations. If from this total only those
cubes that bear all six colours on their faces are selected,
a set of 30 different cubes is obtained; two cubes are re-
garded as “different” if they cannot be placed side by side
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so that all corresponding faces match. Many fascinating
puzzles arise from these coloured squares and cubes; many
more could be devised. Some of them have appeared com-
mercially at various times under different names, such as
the Mayblox Puzzle, the Tantalizer, and the Katzenjam-
mer. Stimulating discussions may be found in books by
MacMahon, Winter, and O’Beirne (see Bibliography).

A revival of interest in coloured-cube problems was
aroused by the appearance of a puzzle known as Instant In-
sanity, consisting of four cubes, each of which has its faces
painted white, red, green, and blue in a definite scheme.
The puzzle is to assemble the cubes into a 1 X 1 X 4 prism
such that all four colours appear on each of the four long
faces of the prism. Since each cube admits of 24 different
orientations, there are 82,944 possible prismatic arrange-
ments; of these only two are the required solutions.

This puzzle was soon superseded by Rubik’s Cube, de-
veloped independently by Erné Rubik (who obtained a
Hungarian patent in 1975) and Terutoshi Ishigi (who ob-
tained a Japanese patent in 1976). The cube appears to
be composed of 27 smaller cubes, or cubelets; in its initial
state, each of the six faces of the cube is made up of nine
cubelet faces all of the same colour. In the commercial
versions of the puzzle, an internal system of pivots allows
any layer of nine cubelets to be rotated with respect to the
rest, so that successive rotations about the three axes cause
the cubelet faces to become scrambled. The challenge of
restoring a scrambled cube to its original configuration

From M Gardner. “A Game in Which Standard Pieces of Cubes Are Assembled nto Larger
Forms (Soma Cubes) " Copyright © 1958 by Scientific American, Inc All nghts reserved

4

2

w

Figure 21: Soma Cubes.
(Top) The seven basic pieces. (Bottom) Examples of some of
the shapes that can be built from Soma pieces.

is formidable, inasmuch as more than 10’ states can be
reached from a given starting condition. A thriving liter-
ature quickly developed for the exposition of systematic
solutions (based on group theory) of scrambled cubes.
Nim and similar games. A game so old that its origin is
obscure, Nim lends itself nicely to mathematical analysis.
In its generalized form, any number of objects (counters)
are divided arbitrarily into several piles. Two people play
alternately; each, in turn, selects any one of the piles and
removes from it all the objects, or as many as he chooses,
but at least one object. The player removing the last object
wins. Every combination of the objects may be considered
“safe” or “unsafe™ i.e., if the position left by a player
after his move assures a win for that player, the position
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is called safe. Every unsafe position can be made safe
by an appropriate move, but every safe position is made
unsafe by any move. To determine whether a position is
safe or unsafe, the number of objects in each pile may be
expressed in binary notation: if each column adds up to
zero or an even number, the position is safe. For example,
if at some stage of the game, three piles contain 4, 9, and
15 objects, the calculation is:

4— 100
9—1001
I5—=1111

2212

Since the second column from the right adds up to 1, an
odd number, the given combination is unsafe. A skillful
player will always move so that every unsafe position left
to him is changed to a safe position.

A similar game is played with just two piles; in each
draw the player may take objects from either pile or from
both piles, but in the latter event he must take the same
number from each pile. The player taking the last counter
is the winner.

Games such as Nim make considerable demands upon
the player’s ability to translate decimal numbers into
binary numbers and vice versa. Since digital computers
operate on the binary system, however, it is possible to
program a computer (or build a special machine) that will
play a perfect game. Such a machine was invented by E.U.
Condon and an associate; their automatic Nimatron was
exhibited at the New York World’s Fair in 1940.

Games of this sort seem to be widely played the world
over. The game of Pebbles, also known as the game of
QOdds, is played by two people who start with an odd
number of pebbles placed in a pile. Taking turns, each
player draws one, or two, or three pebbles from the pile.
When all the pebbles have been drawn, the player who
has an odd number of them in his possession wins.

Predecessors of these games, in which players distribute
pebbles, seeds, or other counters into rows of holes under
varying rules, have been played for centuries in Africa and
Asia and are known as Mancala games.

PROBLEMS OF LOGICAL INFERENCE

Logical puzzles. Many challenging questions do not in-
volve numerical or geometrical considerations but call for
deductive inferences based chiefly on logical relationships.
Such puzzles are not to be confounded with riddles, which
frequently rely upon deliberately misleading or ambiguous
statements, a play on words, or some other device in-
tended to catch the unwary. Logical puzzles do not admit
of a standard procedure or generalized pattern for their
solution and are usually solved by some trial-and-error
method. This is not to say that the guessing is haphazard;
on the contrary, the given facts (generally minimal) sug-
gest several hypotheses. These can be successively rejected
if found inconsistent, until, by substitution and elimina-
tion, the solution is finally reached. The use of various
techniques of logic may sometimes prove helpful, but in
the last analysis, success depends largely upon that elusive
capacity called ingenuity. For convenience, logic problems
are arbitrarily grouped in the following categories.

The brakeman, the fireman, and the engineer. The
brakeman-fireman-engineer puzzle has become a classic.
The following version of it appeared in O. Jacoby and
W.H. Benson’s Mathematics for Pleasure (1962).

The names, not necessarily respectively, of the brakeman,
fireman, and engineer of a certain train were Smith, Jones,
and Robinson. Three passengers on the train happened to
have the same names and, in order to distinguish them
from the railway employees, will be referred to hereafter
as Mr. Smith, Mr. Jones, and Mr. Robinson. Mr. Robin-
son lived in Detroit; the brakeman lived halfway between
Chicago and Detroit; Mr. Jones earned exactly $2,000 per
year; Smith beat the fireman at billiards; the brakeman’s
next-door neighbour, one of the passengers, earned exactly
three times as much as the brakeman; and the passenger
who lived in Chicago had the same name as the brake-
man. What was the name of the engineer?

Overlapping groups. The following problem is typical

of the overlapping-groups category. Among the members
of a high-school language club, 21 were studying French;
20, German; 26, Spanish; 12, both French and Spanish;
10, both French and German; nine, both Spanish and
German; and three, French, Spanish, and German. How
many club members were there? How many members
were studying only one language?

Truths and lies. Another kind of logical inference puz-
zle concerns truths and lies. One variety is as follows:
Some of the natives of a certain South Pacific island are
pure-blooded and the rest are half-breeds, but they all
look alike. The pure-blooded always tell the truth, but
the half-breeds always lie. A visitor to the island, meeting
three natives, asks them whether they are full-blooded or
half-breeds. The first says something inaudible. The sec-
ond, pointing to the first, says, “He says that he is pure-
blooded.” The third, pointing to the second, says, “He
lies.” Knowing beforehand that only one is a half-breed,
the visitor decides what each of the three is.

In a slightly different type, four men, one of whom was
known to have committed a certain crime, made the fol-
lowing statements when questioned by the police:

Archie: Dave did it.

Dave: Tony did it.

Gus: 1 didn’t do it.

Tony: Dave lied when he said I did it.

If only one of these four statements is true, who was the
guilty man? On the other hand, if only one of these four
statements is false, who was the guilty man? (From 70/
Puzzles in Thought and Logic by C.R. Wylie, Jr.; Dover
Publications, Inc., New York, 1957. Reprinted through
the permission of the publisher.)

The smudged faces. The problem of the smudged faces
is another instance of pure logical deduction. Three trav-
ellers were aboard a train that had just emerged from
a tunnel, leaving a smudge of soot on the forehead of
each. While they were laughing at each other, and before
they could look into a mirror, a neighbouring passenger
suggested that although no one of the three knew whether
he himself was smudged, there was a way of finding out
without using a mirror. He suggested: “Each of the three
of you look at the other two; if you see at least one whose
forehead is smudged, raise your hand.” Each raised his
hand at once. “Now,” said the neighbour, “as soon as
one of you knows for sure whether his own forehead is
smudged or not, he should drop his hand, but not before.”
After a moment or two, one of the men dropped his hand
with a smile of satisfaction, saying: “I know.” How did
that man know that his forehead was smudged?

The unexpected hanging. A final example might be the
paradox of the unexpected hanging, a remarkable puzzle
that first became known by word of mouth in the early
1940s. One form of the paradox is the following: A prisoner
has been sentenced on Saturday. The judge announces
that “the hanging will take place at noon on one of the
seven days of next week, but you will not know which
day it is until you are told on the morning of the day of
the hanging.” The prisoner, on mulling this over, decided
that the judge’s sentence could not possibly be carried out.
“For example,” said he, “I can’t be hanged next Saturday,
the last day of the week, because on Friday afternoon I'd
still be alive and I'd know for sure that I'd be hanged on
Saturday. But I’d known this before I was told about it on
Saturday morning, and this would contradict the judge’s
statement.” In the same way, he argued, they could not
hang him on Friday, or Thursday, or Wednesday, Tues-
day, or Monday. “And they can’t hang me tomorrow,”
thought the prisoner, “because I know it today!”

Careful analysis reveals that this argument is false, and
that the decree can be carried out. The paradox is a subtle
one. The crucial point is that a statement about a future
event can be known to be a true prediction by one person
but not known to be true by another person until after
the event has taken place.

Logical paradoxes. Highly amusing and often tantaliz-
ing, logical paradoxes generally lead to searching discus-
sions of the foundations of mathematics. As early as the
6th century Bc, the Cretan prophet Epimenides allegedly
observed that “All Cretans are liars,” which, in effect,
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means that “All statements made by Cretans are false.”
Since Epimenides was a Cretan, the statement made by
him is false, so that all statements made by Cretans are
not false. Thus the initial statement is self-contradictory. A
similar dilemma was given by an English mathematician,
P.E.B. Jourdain, in 1913, when he proposed the card para-
dox. This was a card on one side of which was printed:
“The sentence on the other side of this card is TRUE.”

On the other side of the card the sentence read:
“The sentence on the other side of this card is FALSE.”

The barber paradox, offered by Bertrand Russell, was of
the same sort: The only barber in the village declared that
he shaved everyone in the village who did not shave him-
self. On the face of it, this is a perfectly innocent remark
until it is asked “Who shaves the barber?” If he does not
shave himself, then he is one of those in the village who
does not shave himself and so is shaved by the barber,
namely, himself. If he shaves himself, he is, of course, one
of the people in the village who is not shaved by the bar-
ber. The self-contradiction lies in the fact that a statement
is made about “all” the members of a certain class, when
the statement or the object to which the statement refers is
itself a member of the class. In short, the Russell paradox
hinges on the distinction between those classes that are
members of themselves and those that are not members
of themselves. Russell attempted to resolve the paradox
of the class of all classes by introducing the concept of
a hierarchy of logical types but without much success.
Indeed, the entire problem lies close to the philosophical
foundations of mathematics.
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