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PREFACE

Symbolic dynamics is a rapidly growing part of dynamical systems.
Although it originated as a method to study general dynamical systems,
the techniques and ideas have found significant applications in data storage
and transmission as well as linear algebra. This is the first general textbook
on symbolic dynamics and its applications to coding, and we hope that it
will stimulate both engineers and mathematicians to learn and appreciate
the subject.

Dynamical systems originally arose in the study of systems of differ-
ential equations used to model physical phenomena. The mnotions of the
planets, or of mechanical systems, or of molecules in a gas can be modeled
by such systems. One simplification in this study is to discretize time, so
that the state of the system is observed only at discrete ticks of a clock,
like a motion picture. This leads to the study of the iterates of a single
transformation. One is interested in both quantitative behavior, such as
the average time spent in a certain region, and also qualitative behavior,
such as whether a state eventually becomes periodic or tends to infinity.
Symbolic dynamics arose as an attempt to study such systems by means
of discretizing space as well as time. The basic idea is to divide up the set
of possible states into a finite number of pieces, and keep track of which
piece the state of the system lies in at every tick of the clock. Each piece
is associated with a “symbol,” and in this way the evolution of the system
is described by an infinite sequence of symbols. This leads to a “symbolic”
dynamical system that mirrors and helps us to understand the dynamical
behavior of the original system.

In their fundamental paper [MorH1] written over fifty years ago, Morse
and Hedlund named the subject of symbolic dynamics and described its
philosophy as follows.

The methods used in the study of recurrence and transitivity fre-
quently combine classical differential analysis with a more abstract
symbolic analysis. This involves a characterization of the ordinary
dynamical trajectory by an unending sequence of symbols termed a
symbolic trajectory such that the properties of recurrence and transi-
tivity of the dynamical trajectory are reflected in analogous properties
of its symbolic trajectory.

One example of this idea that you are very familiar with is the decimal
expansion of real numbers in the unit interval [0,1). Here the transfor-
mation is given by multiplying a number z € [0,1) by 10 and keeping
its fractional part {10z}. We partition [0,1) into ten equal subintervals
[0,1/10), [1/10,2/10), ..., [9/10,1), and we use the “symbol” j for the
interval [j/10, (j + 1)/10). Let = be a number in [0,1). Using the transfor-
mation z — {10z} and this partition, we write down an infinite sequence

xi
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of symbols corresponding to any given x = .z;x2..., as follows. Since
z € [x,/10,(z1 + 1)/10), the first symbol is just the first digit z; of its
decimal expansion. Since {10z} € [z2/10, (z2 + 1)/10), the next symbol is
the first digit of the decimal expansion of {10z}, which is simply the second
digit =2 of the decimal expansion of . Continuing in this way, we see that
the symbolic sequence derived from x is none other than the sequence of
digits from its decimal expansion.

Symbolic dynamics began when Jacques Hadamard [Had] applied this
idea in 1898 to more complicated systems called geodesic flows on surfaces
of negative curvature. The main point of his work is that there is a simple
description of the possible sequences that can arise this way. He showed
that there is a finite set of forbidden pairs of symbols, and that the possible
sequences are exactly those that do not contain any forbidden pair. This is
an example of one of the fundamental objects of study in symbolic dynam-
ics called a shift of finite type. Later discoveries of Morse, Hedlund, and
others in the 1920’s, 1930’s, and 1940’s showed that in many circumstances
such a finite description of the dynamics is possible. These ideas led in
the 1960’s and 1970’s to the development of powerful mathematical tools
to investigate a class of extremely interesting mappings called hyperbolic
diffeomorphisms. We will see in §6.5 some examples of this.

Another source of inspiration and questions in symbolic dynamics
comes from data storage and transmission. As we discuss in §2.5, when
information is stored as bits on a magnetic or optical disk, there are phys-
ical reasons why it is not stored verbatim. For example, the bits on the
surface of a compact audio disk are written in a long sequence obeying the
constraint that between successive 1’s there are at least two 0’s but no more
than ten 0’s. How can one efficiently transform arbitrary data (such as a
computer program or a Beethoven symphony) into sequences that satisfy
such kinds of constraints? What are the theoretical limits of this kind of
transformation? We are again confronted with a space of sequences having
a finite description, and we are asking questions about such spaces and
ways to encode and decode data from one space (the space of arbitrary
sequences) to another (the space of constrained sequences). One of the
main results in this book, the Finite-State Coding Theorem of Chapter 5,
tells us when such codes are possible, and gives us an algorithm for find-
ing them. This has led to new codes and a deeper understanding of code
constructions. In particular, it has yielded a new and useful technique for
code construction called the state-splitting algorithm.

While symbolic dynamics has drawn heavily on other mathematical
disciplines such as linear algebra for its tools, it has also contributed new
tools for other areas. For example, some deep work of Boyle and Handel-
man in symbolic dynamics described in Chapter 11 has led to the complete
solution of the problem of characterizing the possible sets of nonzero eigen-
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values of real nonnegative matrices. This solved a variant of a problem
which has been perplexing linear algebraists for decades.

This book is intended to serve as an introduction to symbolic dynamics,
its basic ideas, techniques, problems, and spirit. We will focus on symbolic
dynamical systems that use just a finite number of symbols, on sequences of
such symbols that are infinite in both directions (unlike the decimal expan-
sion above), and spaces of sequences that have finite memory properties.
Our aim is to study coding problems for such systems. In particular, we
concentrate on the following:

e Find complete sets of necessary and sufficient conditions for the exis-
tence of various types of codes from one symbolic dynamical system
to another.

e Completely determine the values of certain properties, invariant un-
der a natural notion of “conjugacy,” such as entropy, numbers of
periodic sequences, and so on.

e Explore interactions with information and coding theory, linear al-
gebra, and general dynamical systems.

On the other hand, there are many important topics within symbolic
dynamics that we do not treat in any depth in this book. Many of these
topics are briefly discussed in Chapter 13.

The book is organized as follows. We start in Chapter 1 with the ba-
sic notions in symbolic dynamical systems, such as full shifts, shift spaces,
irreducibility, and sliding block codes. In Chapter 2 we focus on a special
class of shift spaces called shifts of finite type, and in Chapter 3 we study a
generalization of these called sofic shifts. Entropy, an important numerical
invariant, is treated in Chapter 4, which also includes an introduction to the
fundamental Perron-Frobenius theory of nonnegative matrices. Building on
the material in the first four chapters, we develop in Chapter 5 the state-
splitting algorithm for code construction and prove the Finite-State Coding
Theorem. Taken together, the first five chapters form a self-contained in-
troduction to symbolic dynamics and its applications to practical coding
problems.

Starting with Chapter 6 we switch gears. This chapter provides some
background for the general theory of dynamical systems and the place occu-
pied by symbolic dynamics. We show how certain combinatorial ideas like
shift spaces and sliding block codes studied in earlier chapters are natural
expressions of fundamental mathematical notions such as compactness and
continuity. There is a natural notion of two symbolic systems being “the
same,” or conjugate, and Chapter 7 deals with the question of when two
shifts of finite type are conjugate. This is followed in Chapters 8 and 9
with the classification of shifts of finite type and sofic shifts using weaker
notions, namely finite equivalence and almost conjugacy. Chapters 7, 8,
and 9 treat problems of coding between systems with equal entropy. In
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Chapter 10 we treat the case of unequal entropy and, in particular, deter-
mine when one shift of finite type can be embedded in another. The set of
numbers which can occur as entropies of shifts of finite type is determined
in Chapter 11. Also in that chapter we draw on the results of Chapter 10
to prove a partial result towards characterizing the zeta functions of shifts
of finite type (the zeta function is a function which determines the numbers
of periodic sequences of all periods). Some of these results in turn are used
in Chapter 12 to classify shifts of finite type and sofic shifts up to a notion
that sits in between conjugacy and almost conjugacy. The main result of
Chapter 12 may be regarded as a generalization of the Finite-State Coding
Theorem, and tells us when one sofic shift can be encoded into another
in a natural way. Chapter 13 contains a survey of more advanced results
and recent literature on the subject. This is a starting point for students
wishing to become involved in areas of current research.

The mathematical prerequisites for this book are relatively modest. A
reader who has mastered undergraduate courses in linear algebra, abstract
algebra, and calculus should be well prepared. This includes upper-division
undergraduate mathematics majors, mathematics graduate students, and
graduate students studying information and storage systems in computer
science and electrical engineering. We have tried to start from scratch with
basic material that requires little background. Thus in the first five chap-
ters no more than basic linear algebra and one-variable calculus is needed:
matrices, linear transformations, similarity, eigenvalues, eigenvectors, and
notions of convergence and continuity (there are also a few references to
basic abstract algebra, but these are not crucial). Starting with Chapter 6,
the required level of mathematical sophistication increases. We hope that
the foundation laid in the first five chapters will inspire students to continue
reading. Here the reader should know something more of linear algebra,
including the Jordan canonical form, as well as some abstract algebra in-
cluding groups, rings, fields, and ideals, and some basic notions from the
topology of Euclidean space such as open set, closed set, and compact set,
which are quickly reviewed.

The book contains over 500 exercises, ranging from simple checks of
understanding to much more difficult problems and projects. Those that
seem harder have been marked with a *. There is a detailed index as well
as a notation index.

Theorems, propositions, lemmas, and other items are numbered con-
secutively within sections using three parts: k.m.n refers to item n in section
m of Chapter k. For instance, Proposition 5.2.3 refers to the third item in
Section 2 of Chapter 5. Equations are numbered separately with the same
three-part system, but with a different style, so that (3-2-4) refers to the
fourth equation in Section 2 of Chapter 3.

We use the standard notations of Z, Q, R, and C for the sets of integers,
rationals, reals, and complexes, and use Z*, Q*, and R+ to denote the
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nonnegative elements of the corresponding sets. All matrices are assumed
to be square unless stated (or context demands) otherwise.

The authors have taught courses based on preliminary versions of this
material at the University of Washington, Stanford University and the Uni-
versity of California at Berkeley. They have also given lecture series at the
Mathematical Sciences Research Institute in Berkeley and the IBM Al-
maden Research Center. Based on these experiences, here are some sugges-
tions on how to organize the material in this book into courses of different
lengths. Chapters 1-5 would constitute a solid one-quarter course intro-
ducing symbolic dynamics from scratch and concluding with applications
to coding. Chapters 1-7 could form a one-semester course that also in-
cludes more theoretical material and finishes with a detailed discussion of
the conjugacy problem. The entire book can be covered in a one-year course
that would bring students to the frontiers of current research. Of course,
the material can be covered more quickly for students with more than the
minimum required background.

This book has benefited enormously from suggestions, comments, and
corrections made by many people (students, faculty and industrial research-
ers) on preliminary versions of this manuscript, in lectures on these versions,
and in answers to our queries. These include Paul Algoet. Jonathan Ash-
ley, Leslie Badoian, Mignon Belongie, Mike Boyle, Karen Brucks, Elise
Cawley, Phil Chou, Wu Chou, Ethan Coven, Jim Fitzpatrick, Dave For-
ney, Lisa Goldberg, Michael Gormish, Michael Hollander, Danrun Huang,
Natasha Jonoska, Sampath Kannan, Bruce Kitchens, Wolfgang Krieger,
David Larsen, Nelson Markley, Lee Neuwirth, Kyewon Koh Park, Karl Pe-
tersen, Ronny Roth, Paul Siegel, Sylvia Silberger, N. T. Sindhushayana,
Serge Troubetzkoy, Paul Trow, Selim Tuncel, Jeff Von Limbach, Jack Wag-
oner, Peter Walters, Barak Weiss, Susan Williams, and Amy Wilkinson. We
are happy to thank Roy Adler, who first suggested the possibility of a text-
book on symbolic dynamics, especially one that requires only a minimum
amount of mathematical background. Adler’s 1984 set of unpublished lec-
ture notes from Brown University and his notes on Markov partitions were
valuable sources. We are also grateful to Elza Erkip, Amos Lapidoth, and
Erik Ordentlich, who earned their just desserts by working so many of the
exercises in the first five chapters. Special thanks are due to Zhe-xian Wan
for very detailed and helpful comments on our manuscript and to Brian
Hopkins for clarifying a multitude of murky passages and for eliminating
an uncountable number of needless commas. This book is typeset using
the I44S-TEX extensions to TEX, and we thank Michael Spivak for his help
with this. Finally, we wish to express our gratitude to the National Sci-
ence Foundation (grants DMS-9004252 and DMS-9303240), the University
of Washington, and the IBM Corporation for their support of this work.

Current information regarding this book, including selected corrections
and suggestions from readers, may be found using the World Wide Web at
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the address

http://www.math.washington.edu/SymbolicDynamics

This address can also be used to submit items for inclusion.

The first author is profoundly grateful to John Whittier Treat for many
things, both spoken and unspoken, over many years.

The second author would like to thank Yvonne, Nathaniel, Mom and
Dad for a life filled with love and support, without which this book could
not have been written.

Notes on the Second Printing

The Second Printing has provided us the opportunity to fix some minor
errors. In addition, we have made a few changes to reflect the recent solution
by Kim and Roush [KimR12] of the Shift Equivalence Problem described
in §7.3.

A complete list of changes made for the Second Printing is available at
the Web site displayed above. We will continue to list further corrections
and clarifications at this Web site.
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CHAPTER 1

SHIFT SPACES

Shift spaces are to symbolic dynamics what shapes like polygons and
curves are to geometry. We begin by introducing these spaces, and describ-
ing a variety of examples to guide the reader’s intuition. Later chapters
will concentrate on special classes of shift spaces, much as geometry con-
centrates on triangles and circles. As the name might suggest, on each shift
space there is a shift map from the space to itself. Together these form
a “shift dynamical system.” Our main focus will be on such dynamical
systems, their interactions, and their applications.

In addition to discussing shift spaces, this chapter also connects them
with formal languages, gives several methods to construct new shift spaces
from old, and introduces a type of mapping from one shift space to another
called a sliding block code. In the last section, we introduce a special class
of shift spaces and sliding block codes which are of interest in coding theory.

§1.1. Full Shifts

Information is often represented as a sequence of discrete symbols drawn
from a fixed finite set. This book, for example, is really a very long sequence
of letters, punctuation, and other symbols from the typographer’s usual
stock. A real number is described by the infinite sequence of symbols in
its decimal expansion. Computers store data as sequences of 0’s and 1’s.
Compact audio disks use blocks of 0’s and 1’s, representing signal samples,
to digitally record Beethoven symphonies.

In each of these examples, there is a finite set A of symbols which we
will call the alphabet. Elements of A are also called letters, and they will
typically be denoted by a, b, c, ..., or sometimes by digits like 0, 1, 2, ...,
when this is more meaningful. Decimal expansions, for example, use the
alphabet A = {0,1,...,9}.

Although in real life sequences of symbols are finite, it is often extremely
useful to treat long sequences as infinite in both directions (or bi-infinite).
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This is analogous to using real numbers, continuity, and other ideas from
analysis to describe physical quantities which, in reality, can be measured
only with finite accuracy.

Our principal objects of study will therefore be collections of bi-infinite
sequences of symbols from a finite alphabet A. Such a sequence is denoted

by z = (:)iez, or by
r=...T2r_1T92122...,

where each z; € A. The symbol z; is the ith coordinate of x, and z can
be thought of as being given by its coordinates, or as a sort of infinite
“vector.” When writing a specific sequence, you need to specify which is
the Oth coordinate. This is conveniently done with a “decimal point” to
separate the z; with ¢ > 0 from those with ¢ < 0. For example,

z=...010.1101...

means that z_3 =0,z_2=1,z_; =0,z0 =1, 23 = 1,2, = 0, 23 = 1,
and so on.

Definition 1.1.1. If A is a finite alphabet, then the full A-shift is the
collection of all bi-infinite sequences of symbols from A. The full r-shift (or
simply r-shift) is the full shift over the alphabet {0,1,...,r — 1}.

The full A-shift is denoted by
A% = {z = (2:)icz : Ti € A for all i € Z}.

Here AZ is the standard mathematical notation for the set of all functions
from Z to A, and such functions are just the bi-infinite sequences of elements
from A. Each sequence z € AZ is called a point of the full shift. Points
from the full 2-shift are also called binary sequences. If A has size |A| = r,
then there is a natural correspondence between the full A-shift and the
full r-shift, and sometimes the distinction between them is blurred. For
example, it can be convenient to refer to the full shift on {+1,—1} as the
full 2-shift.

Blocks of consecutive symbols will play a central role. A block (or word)
over A is a finite sequence of symbols from .A. We will write blocks without
separating their symbols by commas or other punctuation, so that a typical
block over A = {a, b} looks like aababbabbb. It is convenient to include the
sequence of no symbols, called the empty block (or empty word) and denoted
by €. The length of a block u is the number of symbols it contains, and is
denoted by |u|. Thus if u = aja;...ak is a nonempty block, then |u| = k&,
while |e| = 0. A k-block is simply a block of length k. The set of all k-blocks
over A is denoted A*. A subblock or subword of u = aias...ay is a block
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of the form a;a;y1...a;, where 1 < 4 < j < k. By convention, the empty
block ¢ is a subblock of every block.

If z is a point in A% and i < j, then we will denote the block of coordinates
in z from position i to position j by

.’L‘[,-'j] =ZiTi41..-Tj .
If i > j, define z; ;) to be €. It is also convenient to define
x[i,j) =ZiTi41-.-Tj—-1-

By extension, we will use the notation z(; ) for the right-infinite sequence
T;Ti}+1Ti42 ..., although this is not really a block since it has infinite length.
Similarly, Z(_,i] = ...Ti—2%i—1%i. The central (2k + 1)-block of x is
T(—kk] = T—kT—k+1---Tk. We sometimes will write z[;) for z;, especially
when we want to emphasize the index 1.

Two blocks u and v can be put together, or concatenated, by writing u
first and then v, forming a new block uv having length |uv| = |u| + |v].
Note that uv is in general not the same as vu, although they have the same
length. By convention, eu = ue = u for all blocks wu. If n > 1, then u™
denotes the concatenation of n copies of u, and we put u® = €. The law of
exponents u™u"™ = u™*" then holds for all integers m,n > 0. The point

..uuu.uuy . .. is denoted by u*>°

The index ¢ in a point £ = (:c,-)iez can be thought of as indicating time,
so that, for example, the time-0 coordinate of = is zo. The passage of time
corresponds to shifting the sequence one place to the left, and this gives a
map or transformation from a full shift to itself.

Definition 1.1.2. The shift map o on the full shift .AZ maps a point « to
the point y = o(z) whose ith coordinate is y; = z;4;.

The operation o, pictured below, maps the full shift A% onto itself. There

z = .T,T,T LT T T, T,
I //////
y=o() = ...z, LT, T, T, T,

is also the inverse operation o~ of shifting one place to the right, so that o
is both one-to-one and onto. The composition of o with itself £ > 0 times
o* = go... 00 shifts sequences k places to the left, while o—* = (o—1)k
shifts the same amount to the right. This shifting operation is the reason
AZ is called a full shift (“full” since all sequences of symbols are allowed).
The shift map is useful for expressing many of the concepts in symbolic

dynamics. For example, one basic idea is that of codes, or rules, which
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transform one sequence into another. For us, the most important codes are
those that do not change with time. Consider the map ¢: {0,1}% — {0, 1}Z
defined by the rule ¢(z) = y, where y; = z; + ;41 (mod 2). Then ¢ is a
coding rule that replaces the symbol at index 7 with the sum modulo 2 of
itself and its right neighbor. The coding operation ¢ acts the same at each
coordinate, or is stationary, i.e., independent of time.

Another way to say this is that applying the rule ¢ and then shifting gives
exactly the same result as shifting and then applying ¢. Going through the
following diagram to the right and then down gives the same result as going
down and then to the right.

& g » o(x)
¢ l¢
¢(z) —7— a(4(z)) = ¢(o(z))

We can express this as co¢ = ¢oo, or in terms of the coordinates by
o(é(x))1i) = ¢(o(x))[s), since both equal x;4; + zi42 (mod 2). Recall that
when two mappings f and g satisfy fog = go f, they are said to commute.
Not all pairs of mappings commute (try: f = “put on socks” and g = “put
on shoes”). Using this terminology, a code ¢ on the full 2-shift is stationary

if it commutes with the shift map o, which we can also express by saying
that the following diagram commutes.

{0,1}2 —2 . {0,1)*
J |
{0’ 1}Z L’ {0’ l}z

We will discuss codes in more detail in §1.5.
Points in a full shift which return to themselves after a finite number of
shifts are particularly simple to describe.

Definition 1.1.3. A point z is periodic for o if o™ (z) = x for some n > 1,
and we say that x has period n under o. If z is, periodic, the smallest
positive integer n for which o™(z) = z is the least period of z. If o(x) = z,
then z is called a fixed point for o.

If z has least period k, then it has period 2k, 3k,..., and every period
of x is a multiple of k (see Exercise 1.1.5). A fixed point for ¢ must have
the form a* for some symbol a, and a point of period n has the form u®
for some n-block u.

Iteration of the shift map provides the “dynamics” in symbolic dynamics
(see Chapter 6). Naturally, the “symbolic” part refers to the symbols used
to form sequences in the spaces we will study.



