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Preface

This Review, which first appeared in 1939, has continued to be prepared through the
years with the intention of supplying a reasonably concise presentation of those aspects of
chemistry that are most relevant to the study of biology and medicine. Through the past 15
editions, as in this one, a ‘‘whole organ” or systemic concept of biochemical phenomena has
been favored, while still giving due regard to the burgeoning information on the subcellular
and molecular aspects of biologic material. It is hoped that such an approach will continue
to maintain the book as a direct service to students and practitioners of the health sciences
related to medicine without neglecting fundamental advances in modern molecular
chemistry and biology.

In the 16th edition, it was decided to reorganize the textual material completely and to
recognize as co-authors the 2 colleagues who have for many years served as major contribu-
tors to the work, Professors Victor Rodwell and Peter Mayes. In addition, we have enlisted
the services of several contributors who have written chapters in their specialized areas as
identified in the table of contents. Laurel V. Schaubert has continued to exert her consider-
able artistic talents in the preparation of illustrations, structural formulas, and metabolic
schemes.

It cannot be a surprise to those who have used this book over the years that it now
contains substantially more pages then we started with. It can only be hoped that we have
reached a satisfactory compromise between an adequate presentation of an ever-growing
body of knowledge and our desire to maintain a concise presentation.

Harold A. Harper
Victor Rodwell
Peter A. Mayes

San Francisco
June, 1977
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1...
Introduction

The purpose of this chapter is (1) to review cer-
tain aspects of organic chemistry relevant to the under-
standing of physiologic chemistry and (2) to provide
certain guidelines designed to assist the learning and
integration of the information presented in this book.

The early chapters of this book deal with the
structures and properties of chemical compounds im-
portant in physiologic chemistry. Some of these struc-
tures will be familiar from the study of organic chem-
istry, but many are highly complex structures (eg,
heterocyclic structures*) perhaps not previously en-
countered. The chemistry and the physiologic chemis-
try of unfamiliar molecules are largely predictable
from those of structurally similar molecules as well as
from the structure of molecules that possess identical
functional groups.t In general, each functional group
in a molecule will behave in a predictable way with
respect to the reactions it will undergo. This will be a
valuable guide also to the kinds of enzyme-catalyzed
transformations that the group undergoes in living
cells. The chemical elements which comprise func-
tional groups will first be considered.

THE ELEMENTS OF THE SECOND & THIRD
PERIODS OF THE PERIODIC TABLE

With the exception of certain metal ions, physio-
logic chemistry is, for the most part, related to the
chemistry of the elements of the second and third
periods of the periodic table.

In 1976, instruments designed to detect either
new or the known forms of life were landed on the
planet Mars. The experiments that were conducted as-
sumed the existence of certain probable similarities

*Hetero atoms (Greek heteros = ““other”) such as O, N, and
S also form covalent bonds with carbon, eg, in ethylamine,
C,HsNH,;, ethyl alcohol, C;HsOH, and ethyl mercaptan,
C,HsSH. Hetero atoms have one or more pairs of electrons not
involved in covalent bonding. Since these unshared electrons
have a negative field, compounds with hetero atoms attract
protons, ie, they act as bases (see Chapter 2). Heterocyclic struc-
tures are cyclic structures that contain hetero atoms.

tA functional group (eg, —NH,, —COOH, —OH) is a specific
arrangement of linked chemical elements that has well-defined
chemical and physical properties.

Table 1—1. The elemental composition of living cells.

Composition by Composition by
Element Weight (%) Element Weight (%)
0 65
C 18 Cu, Zn
H 10 Se, Mo
N 3 F,ClL 1 070
Ca 1.5 Mn, Co, Fe
P 1.0
K 0.35 Li, Sr
S 0.25 Al, Si, Pb Tracest
Na 0.15 V, As
Mg 0.05 Br
Total 99.30

tVariable occurrence in cells. No known function in most cases.

between terrestrial life and hypothetical life elsewhere
in the universe. One central assumption was that extra-
terrestrial life would use some or all of the same ele-
ments used by terrestrial life.

On earth, all cells, regardless of their origin (ani-
mal, plant, or microbial), contain the same elements
in approximately the same proportions (Table 1-—1).
Thus, of the more than 100 known elements, only
19 are essential for terrestrial life. Perhaps there is
some logical chemical explanation for their selection.

Six nonmetals (O, C, H, N, P, and S), which con-
tribute almost 98% of the total mass of cells, provide
the structural elements of protoplasm. From them the
functional components of cells (walls, membranes,
genes, enzymes, etc) are formed. These 6 elements all
occur in the first 3 periods of the periodic table (Table
1-2).

The relative abundance of these 6 elements in the
seas, crust, and atmosphere of earth does not by itself
explain their utilization for life. Aluminum is more
abundant than carbon but performs no known func-.

Table 1-2. The structural elements of protoplasm.

Period Group

I L] U1 v | v ] Vvl| Vvl Vil

WIN| ==




2 Chapter 1. Introduction

tion essential to life. By contrast, the intrinsic chemical
properties of these 6 elements suggest their unique
suitability as building blocks for life. Desirable features
for structural elements apparently are as follows:
(1) Small atomic radius. (2) The versatility conferred
by the ability to form 1-, 2-, 3-, and 4-electron bonds.
(3) The ability to form multiple bonds.

Small atoms form the tightest, most stable
bonds—a distinct advantage for structural elements. H,
O, N, and C are the smallest atoms capable of forming
1-, 2-, 3-, and 4-electron bonds, respectively. Utiliza-
tion of all possible types of electron bonds permits
maximum versatility in molecular design. So also does
the ability to form multiple bonds, a property con-
fined almost entirely to P, S, and the elements of
period 2. Advantages of C- versus Si- based life include:
(1) Greater chemical stability of C—C versus Si—Si
bonds. (2) The ability of C, but not of Si, to form
multiple bonds (eg, the oxides of C are diffusible, mon-
atomic gases, whereas the oxide of Si is a viscous poly-
mer). (3) The stability of C—C bonds, but not of Si—Si
bonds, to rupture by nucleophilic reagents* such as
02 N Hzo, or NH3.

Similar factors uniquely qualify P and S for utili-
zation in energy transfer reactions. Energy transfer is
facilitated by bonds susceptible to nucleophilic attackt
(eg, nucleophilic attack of the 6-OH of glucose on the
terminal P—P bond of ATP, forming ADP plus glucose-
6-phosphate). P and S resemble Si in that P—P or S—S
bonds, like Si—Si bonds, are susceptible to nucleophilic
rupture by virtue of their unoccupied third orbitals.
However, unlike Si, P and S form multiple bonds
(more versatile), a consequence of their smaller atomic
diameters. Most energy transfer reactions in biochem-
istry may be visualized as resulting from attack of a
nucleophil (N) on the unoccupied third orbital of a
phosphorus atom:

o

1
“0-P-0-R
|l

-0 N

The characteristic chemical and physical proper-
ties of the chemical elements of life are the same
throughout the known universe. It thus seems probable
that if life exists elsewhere, the same elements are em-
ployed for the same or similar reasons. Taking this one
step further, it seems likely that the kinds of biologic
molecules formed from these elements and the kinds
of reactions they might undergo would bear strong
similarities to those on earth. For this reason, a bio-
chemist is probably the scientist most likely to recog-
nize and understand extraterrestrial life in whatever
size or physical shape it might occur.

*Electron-rich elements or compounds.
tAttack of an electron-rich center upon an electron-deficient
center.

REVIEW OF ORGANIC CHEMISTRY

It is believed that a sound understanding of or-
ganic chemistry is an essential prerequisite to the study
of physiologic chemistry. Satisfactory knowledge of
organic chemistry will enhance an understanding of the
reactions of chemical compounds that are catalyzed in
cells by the class of proteins known as enzymes.

This section is not intended as a complete review
of organic chemistry but rather as a summary of the
main points. The material should be quite familiar to
those who have only recently completed the study of
this branch of chemistry.

The Covalent Bond

The region in space where an electron is most
likely to be found is termed an orbital. The sizes and
shapes of different orbitals may be thought of as deter-
mining the spatial arrangements of atoms in molecules.
The most fundamental of the “rules” that describe the
electronic configurations of atoms is the Pauli exclu-
sion principle: only 2 electrons can occupy any given
orbital, and these must have opposite spins. Electrons
of like spin tend to get as far away from each other as
possible. Electrons in molecules occupy orbitals in
accordance with similar rules.

To form a covalent bond, 2 atoms must be posi-
tioned so that an orbital of one overlaps an orbital of
the other. Each orbital must contain a single electron,
and these must have opposite spins. The 2 atomic
orbitals merge, forming a single bond orbital contain*
ing both electrons. Since this new arrangement con-
tains less energy (ie, is more stable) than that of the
isolated atoms, energy is evolved when bonds are
formed. The amount of energy (per mol) given off
when a bond is formed is called the bond dissociation
energy. For a given pair of atoms, the greater the over-
lapping of atomic orbitals, the stronger the bond.

The carbon atom (atomic number = nuclear
charge = 6) has 6 electrons, 2 of which are unpaired
and occupy separate 2p orbitals:

Although this suggests that C should form 2 bond
orbitals with H, 4 bonds are formed, giving CH, . Since
bond formation is an exergonic (stabilizing) process, as
many bonds as possible tend to be formed. This occurs
even if the resulting bond orbitals bear little resem-
blance to the original atomic orbitals.

To produce a tetravalent C atom, mentally ‘“‘pro-
mote” one of the 2s electrons to the empty p orbital:

c 2 g OO0,

2p



Chapter 1. Introduction 3

While this representation suggests C should form 3
bonds of one type (using the p orbitals) and a fourth
of another type (using the s orbital), the 4 bonds of
methane are known to be equivalent. The molecular
orbitals have a mixed or hybridized character and are
termed sp3 orbitals since they are considered to arise
from mixing of one s and 3 p orbitals:

oXcYolo)
i/_r’ HYBRIDIZATION
OO0,

s_PS

a® O

sp3 Orbitals have the following shape:

We shall neglect the back lobe and represent the front
lobe as a sphere:

\

Concentrating atomic orbitals in the direction of
a bond permits greater overlapping and strengthens the
bond. The most favored hybrid orbital is therefore
much more strongly directed than either s or p
orbitals, and the 4 orbitals are exactly equivalent. Most
important, these hybrid orbitals are directed toward
the corners of a regular tetrahedron. This permits them
to be as far away from each other as possible (recall
Pauli exclusion principle).

Bond Angle

For maximum overlapping of the sp3 orbitals of
C with the s orbitals of hydrogen, the 4 H nuclei must
be along the axes of the sp> orbitals and at the corners
of a tetrahedron. The angle between any 2 C—H bonds
must therefore be the tetrahedral angle 109.5°:

H

Methane has been shown experimentally to conform to
this model. Each C—H bond has exactly the same
length (0.109 nm) and dissociation energy (102 kcal/
mol), and the angle between any pair of bonds is
109.5°. Characteristic bond lengths, bond energies, and
bond angles thus are associated with covalent bonds.
Unlike the ionic bond, which is equally strong in all
directions, the covalent bond has directional character.
Thus, the chemistry of the covalent bond is much con-
cemed with molecular size and shape. Three kinds of C
atom are encountered: tetrahedral (sp® hybridized),
trigonal (sp? hybridized), and digonal (sp hybridized).

In ammonia (NH; ), nitrogen (atomic number = 7)
has a valence state similar to that described for carbon:
4 sp3 orbitals directed to the corners of a tetrahedron.

2s

zXc¥olo)

sp> HYBRIDIZATION

\SEOJOXO)
sp*

Each of the unpaired electrons of N occupying one of
the sp3 orbitals can pair with that of a H atom, giving
NH;. The fourth sp3 orbital contains an unshared elec-
tron pair. The unshared electron pair appears to
occupy more space and to compress the bond angles
slightly to 107°. It is a region of high electron density
and confers on NHj its basic properties (attracts pro-
tons).
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In H,0, the O (atomic number = 8) has only 2
unpaired electrons and hence bonds to only 2 hydro-
gens,
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Water also is tetrahedral. The 2 hydrogens occupy 2
corners of the tetrahedron and the 2 unshared electron
pairs the remaining corners. The bond angle (105°) is
even smaller than that in NH;.

H
PREDICTED SHAPE
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ACTUAL SHAPE

Isomers

Isomers (Greek isos = same; meros = part) are
chemical compounds that have identical elemental
compositions. For example, for the empirical formula
C3H, O, three isomers are possible.

CHy
CHOH
CHj
2-Propanol
(1-methylethanol)

CH3CH,CH,OH

1-Propanol

CHz~0-CH,CHg
Methylethyl ether

The chemical properties of compounds having the
same empirical formula are frequently quite different
(eg, 1-propanol and methylethyl ether). Occasionally,
they are quite similar (eg, 1-propanol and 2-propanol),
and in certain special cases discussed below they are
identical.

Stereoisomers

Stereoisomers differ only in the way in which the
constituent atoms are oriented in space; they are like
one another with respect to which atoms are attached
to which other atoms. In methane, CH,, the 4 hydro-
gen atoms are at the vertices of an imaginary equilat-
eral tetrahedron (4-sided pyramid) with the carbon
atom at the center.

H

A carbon atom to which 4 different atoms or groups of
atoms are attached is known as an asymmetric carbon
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atom. For example, in the formula for alanine, the
asymmetric (alpha) carbon atom is starred (*).

H
|

cns—clz"—coou
NH,,

Alanine

Many carbohydrates, peptides, steroids, nucleic
acids, etc contain 2 or more asymmetric C atoms. A
thorough understanding of the stereochemistry of
systems with more than one asymmetric center is
therefore essential.

Representations of Spatial Relationships
Between Atoms

Certain spatial relationships are readily visualized
using ball-and-stick atomic models. A compound hav-
ing asymmetric carbon atoms exhibits optical isomer-
ism. Thus, lactic acid has 2 nonequivalent optical iso-
mers, one being the mirror image or enantiomer of the
other (Fig 1-1).

The reader may convince himself that these struc-
tures are indeed different by changing the positions of
either enantiomer by rotation about any axis and at-
tempting to superimpose one structure on the other.

Although enantiomers of a given compound have
the same chemical properties, certain of their physical
and essentially all of their physiologic properties are
different. Enantiomers rotate plane-polarized light to
an equal extent but in opposite directions. Since en-
zymes act on only one of a pair of enantiomers, only
half of a racemic mixture (a mixture of equal quan-

CO,H
H&-—1-->0OH
CH3
CO,H
HO H
CH3

tities of both enantiomers) generally is physiologically
active.

The number of possible different isomers is 21,
where n = the number of different asymmetric carbon
atoms. An aldotetrose, for example, contains 2 asym-
metric carbon atoms; hence, there are 22 = 4 optical
isomers (Fig 1-2).

To represent 3-dimensional molecules in 2 dimen-
sions, projection formulas, introduced by Emil Fischer,
are used. The molecule is placed with the asymmetric
carbon in the plane of the projection. The groups at
the top and bottom project behind the plane of projec-
tion. Those to the right and left project equally above
the plane of projection. The molecule is then projected
in the form of a cross (Fig 1-3).

Unfortunately, the orientation of the tetrahedron
differs from that of Fig 1—1. Fischer projection formu-
las may never be lifted from the plane of the paper and
turned over. Since the vertical bonds are really below
the projection plane while the horizontal bonds are
above it, it also is not permissible to rotate the Fischer
projection formula within the plane of the paper by
either a 90-degree or a 270-degree angle, although it is
permissible to rotate it 180 degrees.

A special representation and nomenclature for
molecules with 2 asymmetric carbon atoms derives
from the names of the 4-carbon sugars erythrose and
threose. If 2 like groups (eg, 2 —OH groups) are on the
same side, the isomer is called the “erythro” form; if
on the opposite side, the “threo” isomer. Fischer pro-
jection formulas inadequately represent one feature of
these molecules. Look at the models from which these
formulas are derived. The upper part of Fig 1—2 repre-
sents molecules in the “eclipsed” form in which the
groups attached to C, and C; approach each other as

(-)-Lactic acid

Figure 1—1. Tetrahedral and ball-and-stick model representation of lactic acid enantiomers.



