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Preface

More than 20 years ago, the first edition of the textbook Thermodynamics was
published in the German language.

Its target was to demonstrate the basic principles, how thermodynamics can
contribute to solve manifold kinds of problems in gas, oil and chemical processing,
pharmaceutical and food production, in environmental industry, in plant design by
engineering companies, and also for institutions dealing with hazardous materials
like the fire brigade, transport companies or the Technical Supervisory Associations.
For all these purposes, it is often decisive to have a profound knowledge of the
thermophysical properties, transport properties, phase equilibria, and chemical
equilibria. Therefore, a large part of the first edition and also of this completely new
edition is dedicated to the evaluation of these quantities. The mentioned properties
are also helpful in the evaluation of nonequilibrium properties such as kinetic data
and reaction rates, which are not subject of this book.

Databases filing published experimental physical properties and phase equi-
librium data are a prerequisite for developing thermodynamic models and for
determining reliable model parameters, which describe the problem to be solved
with adequate accuracy. A long way has been covered since the beginning of
the professional filing of phase equilibrium data. Starting with a few hundred
compounds in 1973, pure component and mixture properties for more than 33 000
components can now be found in the Dortmund Data Bank (DDB). A great step
forward in modeling was the further development of the solution of group concept,
which makes the prediction of, for example, phase equilibria possible. A lot of
experimental work was performed to systematically fill the gaps where no data
for the determination of group interaction parameters were available. Together
with the fast developing computer technology and on the basis of professional
databases like the DDB, process simulators nowadays allow rapid calculation of
phase equilibria, transport properties, caloric data, the various thermophysical
properties, and chemical equilibria. Even the thermodynamics of large industrial
processes is routinely modeled using commercial process simulators. While a large
variety of models and model options can be selected by a simple mouse-click, the
task of the engineer or chemist remains to choose the most appropriate model,
and one should be aware of its accuracy, its possible limitations, and the quality
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of the model parameters for the system of interest. A thorough understanding
of thermodynamics is still obligatory; otherwise misconceptions of processes or
design errors are the consequences.

The new edition of the textbook, now written in the English language, is called
Chemical Thermodynamics for Process Simulation. It specifically targets readers work-
ing in the fields of process development, process synthesis, or process optimization
and therefore presents the fundamentals of thermodynamics not only for stu-
dents but also on the level required for experienced process engineers. The most
important models that are applied in process industry are thoroughly explained,
as well as their adjustment with the help of factual databases (data regression).
Cubic equations of state with gt mixing rules present a great step forward toward
a universal model for both subcritical and supercritical systems and are therefore
emphasized.

In addition, models for special substances like carboxylic acids, hydrogen fluoride,
formaldehyde, electrolytes, and polymers are introduced and the capabilities of
high-precision equations of state and various predictive methods are explained.
Recommendations for the parameter fitting procedure and numerous hints to
avoid pitfalls during process simulation are given. Because of the space limitation
in the book we were not able to cover the whole range of thermodynamics, for
example, adsorption has been left out completely as it cannot be presented within
a short chapter.

The English language was chosen to extend the readership to students and
engineers from all over the world. Although none of the authors is a native speaker,
we found it even more convenient to describe the particular issues in the language
generally used in scientific publications.

The team of four authors with considerably different backgrounds reflects the
importance of thermodynamics in both academia and industrial application. The
authors present their biography and special research interests on separate pages
following this preface.

In contrast to other textbooks on thermodynamics, we assume that the readers
are familiar with the fundamentals of classical thermodynamics, that means the
definitions of quantities like pressure, temperature, internal energy, enthalpy,
entropy, and the three laws of thermodynamics, which are very well explained in
other textbooks. We therefore restricted ourselves to only a brief introduction and
devoted more space to the description of the real behavior of the pure compounds
and their mixtures. The ideal gas law is mainly used as a reference state; for
application examples, the real behavior of gases and liquids is calculated with
modern g models, equations of state, and group contribution methods.

Of course, by taking into account the real behavior the solution of the examples
becomes much more complex, but at the same time they are closer to industrial
practice. For a textbook, there is a difficulty to describe the typical iterative
procedures in phase equilibrium and process calculations. In order to achieve
a better understanding, we decided to provide MathCAD-sheets and DDBST
programs so that the reader has the chance to reproduce the examples on his
own. MathCAD was chosen because of its convenient way to write equations in
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close-to-textbook form and without cryptic variable names. We prefer SI units but
do not stick to them obsessively. In the examples and diagrams we used the most
convenient units. We think that the parallel use of various units will remain the
status quo for the time being, and engineers and chemists should be able to cope
with this situation. We are aware that the current value of the gas constant is
R = 8.31447 ] /(mol K). However, still many applications are based on the old value
R =8.31433 ] /(mol K). Luckily, except for the high-precision equations of state this
distinction is by far beyond the accuracy scope of our calculations.

For a complete understanding, mathematical derivations can often not be avoided
or are even necessary for the understanding. If they interrupt the flow of the
presentation, we have moved them to a special chapter in the Appendix, so that the
reader can follow the main ideas more easily. Of course, no textbook can cover all
possible and interesting derivations, but we hope that the reader will gain a feeling
for the methodology in thermodynamics and is able to carry out similar derivations
on his own.

We hope that this book closes a gap between scientific development and its
application in industry. We are grateful to all the people who gave us valuable
support and advice during the compilation of the manuscript. None of the authors
was capable to write an adequate chapter on polymer thermodynamics. Therefore
we are especially obliged to Prof. Dr. Sabine Enders. She wrote an excellent chapter
fully in line with the targets and structure of this book. Many other people gave
valuable advice. We are thankful to Prof. Dr. Wolfgang Wagner, Prof. Dr. Hans
Hasse, Prof. Dr. Josef Novak, Prof. Dr. Roland Span, Todd Willman, Dr. Michael
Sakuth, Ingo Schillgalies, Jens Otten, Dr. André Mohs, Dr. Bastian Schmid, Dr.
Jens Ahlers, Dr. Silke Nebig, Dr. Torben Laursen, Dr. Heiner Landeck, Prof. Dr.
Ravi Prasad Andra, Dr. Michael Benje, the colleagues and coworkers from DDBST
GmbH and the research group at the Carl-von-Ossietzky-University of Oldenburg,
who provided many impressive figures of the book. Furthermore, we are deeply
thankful to our families for supporting us during all the time.

Jiirgen Gmehling
Biirbel Kolbe
Michael Kleiber
Jiirgen Rarey
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