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Preface ix
Preface

The universe is nicely ordered. There is order in the sequence of events
determining the pace of evolution and the rhythms of life alike. Order can be
found in all the structures unfolding around us at different scales. There is
order in the arrangements of matter, in energy flow patterns. in every work
of Nature interweaving space and time. This book is devoted to the study of
a special kind of order referred to as aperiodic order.

Etymologically aperiodic order means order without periodicity. Accord-
ingly. aperiodic order has nothing to do with disorder in any of its possible
multiple forms.. Aperiodic ordered matter exhibits long-range order in space,
just as periodic orderings do. This property clearly distinguishes aperiodic
structures from amorphous matter, the latter being able to display short-range
correlations only. Aperiodic systems can be classified according to different
criteria. For instance, certain aperiodic arrays of atoms are able to give rise to
high quality x-ray or electron diffraction patterns composed of a collection of
discrete Bragg spots, as periodic arrays of atoms also do. This phase of matter
is referred to as quasiperiodic crystals (quasicrystals, for short) and they rep-
resent a natural extension of the periodic crystal notion. The diffraction pat-
terns of quasicrystals are quite bizarre, unveiling the existence of unexpected
symmetries which endow them with an impressive esthetical appeal. They
also exhibit unusual physical properties, closely related to the fractal nature
of their energy spectra. Physically this feature means that some specific frag-
ments of the spectra appear once and again at different scales. Accordingly.
we do not have periodicity but scalability. Indeed. fractal structures, char-
acterized by their invariance under inflation/deflation operation symmetries.
provide another representative example of aperiodically ordered systems.

But. in my opinion, the most important feature of aperiodic systems is their
ability to encode relevant information in a way periodic order is completely
unable to do. It suffices to compare a periodically arranged string of letters.
namely abcabcabeabe.... with the preceding paragraph to immediately grasp
the main point: in a periodic arrangement the information stored is limited
to the basic period defining its structure (the unit cell in the case of a periodic
crystal, for instance). whereas the amount of information stored in an ape-
riodic structure progressively increases as the system size is increased. The
stacking of Watson-Crick complementary bases determining the genetic code
in DNA is perhaps the most paramount example one can find in Nature. In
fact, in DNA two kinds of order coexist in the same sample at just the same
space scale. On the one hand, one has the aperiodic stacking of bases deter-
mining its biological information. On the other hand, one has the periodic
arrangement of sugar-phosphate groups conforming the double-helix structure
which preserves the physical integrity of the macromolecule at physiological
conditions.

Such a blending of ordering principles can provide an inspiring guide for
technological applications. For instance, one can grow layered structures con-
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sisting of a large number of films aperiodically stacked. The simplest example
of such nanostructured materials is a two-component aperiodic heterostruc-
ture, where layers of two different materials (metallic, semiconductor, super-
conductor, dielectric, ferroelectric, ceramics) are arranged according to certain
aperiodic sequence. In this way, two kinds of order are introduced in the same
sample at different length scales. At the atomic level we have the usual crys-
talline order determined by the periodic arrangement of atoms in each layer,
whereas at longer scales we have the aperiodic order determined by the se-
quential deposition of the different layers. This long-range aperiodic order is
artificially imposed during the growth process and can be precisely controlled.
Since different physical phenomena have their own relevant physical scales, by
properly matching the characteristic length scales we can efficiently exploit
the aperiodic order we have introduced in the system, hence opening new av-
enues for technological innovation. Recent works in optoelectronics and signal
communication have fruitfully considered aperiodic designs in order to obtain
improved devices and the very possibility of intentionally combining periodic
and aperiodic materials in hybrid order composed structures has been recently
explored in some detail.

Several topics on the role of aperiodic order in different domains of phys-
ical sciences and technology will be covered in this book. The first chapters
address some basic notions and present the most characteristic features of
different kinds of aperiodic systems in a descriptive way. In Chapter 1 we
introduce different orderings of matter and describe the progressive transition
from periodic to aperiodic thinking in physical sciences. In Chapter 2 the
very notion of aperiodic crystal is introduced, fully describing its historical
roots as well as the paramount discovery of quasicrystalline alloys and their
beautiful forbidden symmetries. The study of the unusual physical properties
of quasicrystalline alloys is then presented in more detail in Chapter 3, pay-
ing special attention to their intriguing electronic structure and the possible
nature of chemical bonding in hierarchically arranged cluster-based solids. In
Chapter 4 we introduce the basic structural properties of man-made materials
consisting of aperiodic sequences of layers such as Fibonacci semiconductor-
based superlattices or Cantor-like dielectric multilayers. The main mathe-
matical features of the substitution sequences defining their growth rule are
also reviewed along with the possible signatures of quasiperiodicity in their
physical properties. -

The two following chapters focus on some theoretical aspects and useful
mathematical approaches introduced to properly study the physical systems
introduced in previous chapters. Accordingly, Chapter 5 is devoted to in-
troducing some simple models describing the fundamental physics of several
aperiodic systems in one dimension. Remarkable properties of their energy
and frequency spectra, such as a highly fragmented, self-similar arrangement
of progressively narrower bands or the critical nature of the eigenstates, are
discussed in detail by considering suitable models for different systems of in-
terest. The impact of the peculiar energy spectra on their related transport
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properties is also addressed. In Chapter 6 we turn our attention to the ape-
riodic crystal of life, by considering some basic features of DNA molecules
from the perspective of condensed matter physics. Some fundamentals on the
diffraction theory by helices are first introduced. Then we discuss the elec-
tronic structure of nucleic acids and summarize what experiments say about
the possible charge transfer processes in DNA. Different effective Hamiltoni-
ans aimed at describing the basic physics of these processes are subsequently
introduced. On the basis of these results, the role of long-range correlations
is critically analyzed from the biophysicist viewpoint.

Afterwards we shift towards more applied issues. Chapter 7 discusses how
to exploit aperiodic order in different technological devices based on multilay-
ered optical systems, photonic and phononic quasicrystals, complex metallic
alloys or DNA-based nanocells. The appealing possibility of introducing novel
designs based on the aperiodic order notion to achieve some specific applica-
tions is further discussed in Chapter 8 by considering not only one-dimensional
systems, but also arrangements of matter in two and three dimensions. Fi-
nally, in Chapter 9 we present some useful mathematical tools which are of
common use in the study of aperiodic systems.

The book is specially intended for both condensed matter physicists and
materials science researchers coming into the field of aperiodic systems from
other areas of research. It can also serve as a useful text for graduate students.

I am gratefully indebted to Esther Belin-Ferré, Jean-Marie Dubois, Uichiro
Mizutani, Patricia A. Thiel, and An Pang Tsai for their continued support
and interest in my research activities during the last decade. as well as to
Victor R. Velasco. who kindly agreed to review several chapters of this book.
Their illuminating advice has significantly contributed to guide my scien-
tific research in the aperiodic order realm. It is a pleasure to thank Janez
Dolinsek, Francisco Dominguez-Adame. Sergey V. Gaponenko. Carlos V. Lan-
dauro, Stephan Roche. Rogelio Rodriguez-Oliveros. and Tsunehiro Takeuchi
for sharing with me their time and efforts in joint research works. I also
express my thanks to Eudenilson L. Albuquerque. José Luis Aragoén. Claire
Berger. Arunava Chakrabarti. Gianaurelio Cuniberti, Luis Elcoro. J. César
Flores, Federico Garcia-Moliner, Didier Mayou, Gerardo G. Naumis. Juan
M. Pérez-Mato, Rudolf A. Rémer, Manuel Torres, Chi-Tin Shih, Jewgeni B.
Starikov, Alexander Voityuk, and Chumin Wang for inspiring conversations,
and to Emilio Artacho, Michael Baake. Javier Garcia-Barriocanal, Roberto
Escudero, José Reyes-Gasga. Ai-Min Guo, Roland Ketzmerick, Kazumoto
Iguchi, and Ruwen Peng for sharing with me very useful materials.

The author is grateful to Taylor & Francis, and to John Navas in particular,
for giving me the opportunity to prepare this book. Last, but not least, I
warmly thank M. Victoria Herndndez for her invaluable support, unfailing
encouragement, and her continued care to the detail.
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1

Orderings of matter

1.1 Periodic thinking in physical sciences

The notion of periodicity allows one to easily grasp the basic order underlying
certain patterns and rhythms in Nature. The essence of periodicity relies on
a basic motif which is indefinitely repeated, along with a set of basic rules
prescribing the way such a repetition process takes place. Periodicity can
occur in time, space, or simultaneously in both of them. Periodicity in time
guarantees that what is known to occur now will also occur later, and can be
asserted to have already occurred before, provided that a certain relationship
between those different instants is fulfilled. Let ¢ be a real number measuring
the passage of time. Then, a function satisfying the condition f(t+1') = f(t)
is periodic in time with a period 7, since its value is preserved (i.e.. it is
invariant) under transformations describing the set of translations generated
back and forth by the arrow of time by the real number 7.

The existence of cyclic processes in Nature accurately obeying such a pe-
riodicity condition is the basis for the possible adoption of physical clocks
(characterized by their T" value). In fact. from the galactic scale down to
atomic and subatomic scales, the natural world has plenty of physical sys-
tems exhibiting nearly exact periodicity in time. Most of these systems can
be described. at least as a first approximation, in terms of dynamic equations
of the form

d*f
dt>

+w?f=0, (1.1)

which is usually referred to as the harmonic oscillator equation, where f is
some physical magnitude (e.g.. a position coordinate. the intensity of an elec-
tric or magnetic field, or the chemical concentration of a substance) and w,
the so-called natural frequency, is a quantity which depends on characteristic
physical parameters of the system. For instance, in the case of a (low ampli-
tude) swinging pendulum we have w? = g/I, where [ is the pendulum’s length,
and g measures the local intensity of the Earth’s gravitational field.

Eq.(1.1) is a second order differential equation. To solve it one must find
a mathematical function f(¢) whose second derivative coincides with (minus)
itself, once properly scaled by a factor w?. The theory of differential equations
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tells us that these requirements are met by solutions of the form
f(t) =acoswt + bsinwt, (1.2)

where the value of the constants a and b is determined from the knowledge of a
suitable set of initial conditions, and w = 27 /7. In the particular case a = b =
R the function given by Eq.(1.2) simply describes a uniform circular motion
of radius R with angular frequency w. Since trigonometric functions satisfy
(by definition) the relations sinfw(t £+ 7")] = sinwt, and cos[w(t £ 1')] = coswt.
we see that the periodicity condition f(t + 1) = f(t) is properly satisfied
by Eq.(1.2). Therefore, the periodicity in time exhibited by the solutions
of Eq.(1.1) naturally emerges from its basic mathematical structure. Quite
remarkably. harmonic equation describes a broad collection of cyclic motions
in nature, ranging from atomic vibrations in solids to population dynamics
in ecosystems. The profuse appearance of this basic equation in the study
of such diverse dynamical systems certainly accounts for the important role
played by periodic thinking in theoretical physics, probably starting with the
pioneering quest for the isochronous pendulum by Galileo Galilei (1564-1642)
and Cristiaan Huygens (1629-1695) in the 17th century.[1]

Periodicity in space guarantees that what is located here must also occur
over there, provided that certain geometrical relationships between "here"
and "there" are fulfilled. Thus, a vector function satisfying the condition
f(r+ R,) = f(r) is periodic in space, since it is invariant under transforma-
tions describing the set of space translations generated by the vector Ry in the
vectorial space to which the variable r also belongs. Periodicity in Euclidean
space can involve rotations as well as translations, and can be expressed in
the general form Mr + Ry = r, where

cosyp —sing 0
M= | sing cosg 0 (1.3)
0 0 1

is an orthogonal matrix describing rotations by an angle p. Let us consider
the vectors describing a lattice of points. which have the general form r =
nie; + naes + nses. where {e;} is a suitable vector basis and n; € Z. The
periodicity condition then implies that the trace of matrix M must take on
integer values.[2] This leads to the so-called crystallographical restrictian

14+ 2cosp =n € Z, (1.4)

which has played a significant role in the development of classical crystallog-
raphy. The main consequence of the relationship given by Eq.(1.4) is that
only a few number of rotations are compatible with the periodicity condi-
tion. Thus, only two-fold, three-fold, four-fold, and six-fold symmetry axes
are allowed in periodic lattices, as it can be straightforwardly deduced from
Eq.(1.4). To this end, we express the crystallographic restriction in the form
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cosp = (n — 1)/2. The condition |cosp| < 1 implies n = {—1,0,1,2,3}. By
plugging these values into the former expression we obtain the solutions listed
in Table 1.1.

TABLE 1.1

Allowed symmetry

axes in periodic

crystals.

n ) AXIS
T 2-fold

0 27/3 3-fold

1 w/2  4-fold

2 w/6  6-fold

3 0 identity

The simplest illustration of processes which are simultaneously periodic in
space and time can be found in wave phenomena. For instance, sinusoidal
waves of the form ¥(r,t) = Uysin(k.r—wt), where k = 27/X is the wave
number and A measures the wavelength, often occur in waves propagating
in gases, liquids or solids as well as in electromagnetic waves propagating in
vacuum. Their characteristic wave function describes a periodic pattern in
space if we fix the time variable (i.e.. t = (). Alternatively, if we fix the space
variable (i.e.. r = ry). it describes a harmonic motion in time at every point of
space, where the quantity k.r; measures the relative dephasing between the
oscillations of two points separated by a distance rjy. The double periodicity
(in space and time) of wave motion can be traced back to the very structure
of the corresponding wave equation. which reads
1 9% B
2ot
where ¢ = w/k is the phase velocity of the wave. The first (second) term in
Eq.(1.5) describes the periodicity in space (time) of the propagating wave,
while its phase velocity couples its spatial pattern to its propagation rhythm.

A key feature of sinusoidal waves, significantly contributing to pervade pe-
riodic thinking in scientific thought, is that any non-sinusoidal. periodic wave
can be represented as a collection of sinusoidal ones (with different frequen-
cies) blended together in a weighted sum of the form [cf. Eq.(1.2)]

V30 + (1.5)

Flt) = % + Z [ cos(wnt) + by, sin(wint)] , (1.6)

m=1

where w,,, = 27m/T, and

Ay = %/f(t)cos(w,,,t)dt, by = %/f(t)sin(w,,,t)dt. (1.7)
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are the so-called Fourier coefficients, after the French mathematician Joseph
Fourier (1788-1830) who introduced this procedure in 1822. Closely related to
this series expansion, one can consider the so-called Fourier transform, which
decomposes a function into a continuous spectrum of its frequency components
according to the expression

S0
F(w) = /f(t)ef"'”’dt. (1.8)

Note that completely analogous expressions hold for periodic functions in
space by simply replacing the corresponding variable in Eqs.(1.6)-(1.8). In
this way, a Fourier transform can be envisioned as a linear transformation
relating two different mathematical domains: that corresponding to usual
time or space variables (which come closer to our everyday experience), and
that corresponding to the related frequency or reciprocal space spectrum,
which encloses a more abstract view of the underlying order in the considered
phenomenon. Remarkably enough, there exist processes in Nature able to
Fourier-transform material structures in a natural way, namely, diffraction
of electromagnetic (x-ray) or matter quantum waves (electrons, neutrons) by
atomic scatters in condensed phases. The resulting diffraction spectra exhibit
regular arrangements of bright spots (the so-called Bragg peaks) disclosing
the abstract information encoded within Fourier space to our eyes. In this
way, the workings of Nature translate wave motion into geometrical patterns
engraved in reciprocal space through the orchestrated interaction of matter
and energy in condensed matter.

Diffraction spectra contain a lot of information about structural details
which must be carefully analyzed, generally requiring a formidable task in
the case of relatively complex structures. But a key, basic feature follows
from the very mathematical definition of the Fourier transform: close spots
in diffraction patterns correspond to scattering centers which are far apart
in physical space. Accordingly, Fourier space description of crystal structures
takes place in the so-called reciprocal space. In Fig.1.1 a celebrated example of
diffraction pattern, ultimately leading to the elucidation of the double-helix
structure of DNA, is shown for the sake of illustration. The cross-shaped
arrangement of Bragg spots in reciprocal space is a characteristic telltale of the
helicoidal distribution of sugar-phosphate groups in physical space. The two
broad dark features located up and down the image correspond to the stacked
nucleotides along the helix axis. We will study the physical implications of
this impressive picture in more detail in Chapter 6.



