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IN MEMORIAM

It has been the writer’s good fortune to know W. T. Reid since 1936, when he was one of the
bright young members of the Department of Mathematics at the University of Chicago. We were
colleagues in the System Evaluation Department of the Sandia Corporation during portions of
1952 and 1953 and in the Department of Mathematics at The University of Oklahoma from
1964 until 1976.

His enthusiasm and meticulous grasp both of theories and of essential details were shown in
the classroom, but especially in seminars and conferences on differential equations and varia-
tional theory. He believed in the highest standards for mathematical education and yet was
patient with those of limited ability who were struggling to follow. He shared generously the
breadth and depth of his knowledge with anyone who sought his counsel. W. T. and Idalia have
been the best of companions on social occasions.

The death of this good man, this cherished friend, on October 14, 1977, represents a pro-
found personal loss to his many former students and associates and is a material loss to the
mathematical community.

George M. Ewing
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Preface

The articles in this volume were all presented at the Conference on Optimal
Control and Differential Equations held at The University of Oklahoma in
Norman, March 2427, 1977. The occasion for this conference was the retire-
ment of Professors W. T. Reid and George M. Ewing from the faculty of
The University of Oklahoma. Since their retirement also signaled the passing
of a generation of mathematicians who made fundamental advances in the
calculus of variations and related problems in differential equations, it
seemed appropriate to mark this occasion with a conference that would at-
tempt to assess the present state of mathematical knowledge in these areas
and suggest directions for new research efforts.

We invited the authors appearing in this volume to present talks on their
own fields of expertise describing the field, rather than presenting new re-
search. The conference itself attracted nearly one hundred participants, and
was made a success through the efforts of many people. We would like to
acknowledge especially the financial support of the Army Research Office,
Durham, Grant No. DAAG29-77-M-0059. We also appreciate the en-
couragement and financial support of Dean Paige Muthollan of the College
of Arts and Sciences; Dean Gordon Atkinson of the Graduate College; and
Dr. Gene Levy, Chairman of the Department of Mathematics, all at The
University of Oklahoma.

We finally acknowledge the special talents of Ms. Trish Abolins for her
expert work as a copy editor and technical typist for the preparation of this
volume.
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OPTIMAL CONTROL AND DIFFERENTIAL EQUATIONS

THE CALCULUS OF VARIATIONS FROM THE BEGINNING
THROUGH OPTIMAL CONTROL THEORY

E. J. McShane

University of Virginia
Charlottesville, Virainia

Before I begin this talk, I would like to sketch briefly
what I plan to do. I hope to speak of some of the important
stages of the development of the calculus of variations, with a
disproportionately large part of the hour allotted to recent
developments. But I have no intention of listing important
discoveries with their dates. Rather, I shall try to say some-
thing of the underlying patterns of thought at each stage, and to
camment on the change in that pattern produced by each of the new
ideas. Tt may seem that I am deriding our predecessors for not
having seen at once all that we have learned. I have no such in-
tention. We must all do our thinking on the foundation of what
we already know. It is hard to assimilate a genuinely new idea,
and even harder to realize that ideas we have earlier acquired

have become obsolete.
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4 E. J. McShane

Preparing this talk has forced me to formulate with at least
some pretension to clarity what is meant by the calculus of
variations. There is no universal agreement on the definition of
the subject, and I have gradually come to the conclusion that
part of the reason is that there are at least two related but
different sets of ideas that are often brought together under the
same name. The first set might be called the theory of extrema.
A functional is defined on some class of functions; the problem
is to find a function in the given class that minimizes or maxi-
mizes the functional on that class. If this theory of extrems
is included in the calculus of variations, Caratheodory may be
Justified in asserting that the first problem in the calculus of
variations was that of finding a curve of given length that joins
the ends of a line segment, and together with that segment
encloses the greatest possible area. This was solved, according
to Caratheodory, by Pappus, in about 290 A.D.

The second set of ideas is concerned with functionals on
linear topclogical spaces, ususally function spaces, and
constitutes a part of a differential calculus on such spaces.

The central problem in this part of the theory is that of finding
stationary points of functionals; that is, points at which the
directional derivatives in all directions exist and are all O .
Since such points are characterized by means of investigating

the effect on the functional produced by small variations of the
function which is the independent variable, this study of sta-
tionary points can reascnably be called the caleulus of varia-
tions.

The two sets of ideas both have important applications, but
to different problems. At one extreme we have those problems
such as the isoperimetric problem of Pappus just mentioned, and
more recently problems in which a function is to be found that
produces a best possible result in some sense, such as propelling
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an airplane between given points with least expenditure of fuel.
At the other extreme we have situations in which the presence or
absence of a maximum or minimum is irrelevant; only the conse-
quences of stationarity matter. These consequences often include
the satisfaction of a set of differential equations. According
to what is misnamed "the principle of least action," the motion
of a set of particles follows a time-development for which a
certain integral, called the "action,” is stationary. The func-
tion for which the action is stationary is the one for which the
classical equations of motion are satisfied, and the satisfac-
tion of those equations is all that we want.

In between these two extremes we have the problems of
relative extrema. Let us say that a function y dis in the
weak e-neighborhood of another function Yo if there is a homeo-
morphism between their graphs such that at corresponding points,
the values of y and Yo differ by less than & , and so do the
values of their derivatives. The function y is in the strong
e-neighborhcod of Yo if this holds with the reference to the
derivatives deleted. A functional has a weak (strong) relative
minimum at Y if for some positive ¢ , the furctional has at
Yo its least value on the set of all those y in the domain of
the functional that are in the weak (strong) e-neighborhood of
Yo These concepte have some applications, related to stable
and unstable equilibrium; but I have a strong suspicion that
relative maxima and minima were usually studied, not because they
were really wanted, but because available theory did not permit
the study of absolute maxima and minima.

For lack of time I shall say little about the second set of
ideas, based on stationarity. This means that I shall disregard
some important pure mathematics and some important applications.
I have mentioned that the principle of least action is of this

type. So too is Hamilton's study of opties and its extension
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into calculus of variations by Jacobi. So is all the mathematics
of quantum theory that is based on a Hamiltonian. So, too, is
Marston Morse's theory of the calculus of variations in the large.
I shall choose for my principal subject the development of the
first set of ideas, that I have called the theory of extrema.

In the eighteenth century the distinction between the two
sets of ideas was hardly noticed. If it could be shown that any
curve that minimized some functional had to satisfy a certain
condition, and a curve could be found that did satisfy that con-
dition, it was accepted without comment that that curve did
furnish the minimum. Nor has such a feeling quite disappeared.
On page 16 of the book by Gelfand and Fomin (English translation)
we read: "In fact, the existence of an extremum is often clear
from the physical or geometric meaning of the problem, e.g., in
the brachistochrone problem, the problem concerning the shortest
distance between two points, ete. If in such a case there exists
only one extremal satisfying the boundary conditions of the
problem, this extremal must perforce be the curve for which the
extremum is achieved." I disagree with this on three counts.
First, if the calculus of variations is mathematics, our conclu-
sions must be deducible logically from the hypotheses, with no
use of anything that is "clear from the physical meaning"” —
even if anything is ever that clear in physics. Second, if the
mathematical expression is meant to be a model of a physical
situation, we are not entitled to unshakeable confidence that the
model we have chosen is perfect in all details; rather, we should
keep in mind that a mathematical model of a physical system is
necessarily a simplification and idealization. Third, the
principle as stated is untrustworthy. For example, if A and
B are two points in the upper half-plane there always exists a
curve joining them such that the surface of revolution obtained

by rotating it about the x-axis has least area. If A and B
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are properly located, there is just one extremal that joins
them, and it does not furnish the least area. (See G. A. Bliss,
"Caleulus of Variations," p. 116.)

In the early eighteenth century the necessary conditions
for a minimum in various specific problems were found by
ingenious devices, usually involving replacing a short arc of the
curve by another short arc with the same ends. In 1760, Lagrange
unified these special solutions by means of the idea of a varia-
tion. Suppose that a function x - y(x) (xo £ x = xl)
minimizes a functional J(x(-+)) in a certain class K of
functions. Suppose further that we can find a family of func-
tions y_ (-b < @ < b) such that for each a in (-b,b) the
function x - ya(x) (XO,a < X< Xl,a) is in the given class
K . Then the derivative at a = O of the function J(y_(+)) ,

if it exists, must be O . The function
x »n(x) = aya(x)/aa (¢ =0)

is often called a variation of y ; Lagrange used the term
"variation" and the symbol &y for the product of this by da
The variation of the functional, which is the derivative of
J(ya(')) at a = 0, is the directional derivative of J in
the direction m . In many interesting cases its vanishing is
equivalent to the satisfaction of a certain differential equa-
tion; this is the Euler-Lagrange equation.

For the purposes of mechanics the goal had now been
reached. The Euler-Lagrange equation permitted the introduction
of general coordinate systems, and the concept of stationary
curve unified the whole theory of classical mechanics, as
Lagrange showed in his masterful work. But it was a mental con-
fusion, consistent with the somewhat uncritical ideas of the
period, to think that any stationary curve would certainly

furnish a maximum or a minimum, as wished. In his "Principia,"
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Isaac Newton had discussed the problem of finding a surface of
revolution with assigned base and altitude that minimized a
functional that Newton thought represented the drag when the
body is moved through a fluid. Legendre published his necessary
condition for a minimum in 1786, a century later; but in 1788, he
published another paper, entitled "Mémoire sur la maniére de
distinguer les maxima des minima dans le calcul de variations,"
in which he pointed‘but that a curve could satisfy the Euler-
Lagrange equation for the integral expressing the Newtonian
resistance and still not give the surface of least resistance.
The most interesting feature of his proof is that he showed that
the Weierstrass condition for a minimum was not satisfied —
and Weierstrass was born until twenty-seven years later. This
work must not have had the immediate effect that it deserved.
Mathematicians continued to act as though the only feature of
importance was the satisfaction of the condition for station-
arity. More than two decades later Robert Woodhouse, F. R. S.,
a Fellow of Caius College, Cambridge, published a book entitled
"Treatise on Isoperimetrical Problems and the Calculus of Varia-
tions," (1810), in which Legendre is not mentioned. In this
book, Woodhouse poses the problem of maximizing the integral

f [a%y/ax*1Pax
the class of curves not being clearly specified. By use of
variations he came to the conclusion that the maximum is pro-
vided by the line segment joining the end-points. Had he used
Legendre's results he would have recognized the falsity of his
conclusion. But even without having read Legendre, he should
have noticed that unless the end-points coincide, no maximum can

exist, and the line segment gives to the integral the value O ,

an obvious minimum.
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The guiding principle during the eighteenth century and more
than half the nineteenth seemed to be that if a minimizing func-
tion is sought for some functional, then by inventing more and
more necessary conditions for a minimum we can feel steadily more
confident that a function that passes all the tests is in fact
the minimizing function sought. The first necessary condition
was stationarity, established when the curve being tested can be
varied in arbitrary directions. The next in order of time was
the Legendre condition, still in the domain of Lagrange-type
variations, and in fact needing only variations that leave the
function unchanged outside a small interval. Next came the con-
dition of Jacobl. Like that of Legendre, it expressed the fact
that for a minimum all directional second derivatives (second
variations) must be nonnegative; but unlike Legendre's it
required the variation of the function along long intervals.
Next came the necessary condition of Weierstrass. Unlike the
others, it cannot be established by means of Lagrange-type
variations or directional derivatives. The function being
tested is compared with other functions near it in position but
widely different in derivative. That is to say, the Weierstrass
condition is necessary for a strong relative minimum, not for a
weak one.

But Weilerstrass made a more significant contribution than
the discovery of a new necessary condition. For unconditioned

problems, in which the minimum of an integral

X1
J[x £(x,y(x),y'(x))dx

0
is sought in the class of all sufficiently well-behaved functions
with assigned end-values, he was able to prove that when a
function y(-) satisfies conditions that are slight strengthen-

ings of the four known necessary conditions, it will provide a



