

REAL-TMME S¥STEMS
AND THEIR
PROGRAMMING
LANGUAGES

Alan Burns
Univ lﬂdtl.-

, Welhnus |

altly of York

CCCCCCC

© 1990 Addison-Wesley Publishers Ltd.
©.1990 Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without prior written
permission of the publisher.

The programs in this book have been included for their instructional value. They
have been tested with care but are nc - guaranteed for any particular purpose. The
publisher does not offer any warranties or representations, nor does it accept any
liabilities with respect to the programs.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Addison-Wesley has made every attempt to
supply trademark information about manufacturers and their products mentioned
in this book. A list of the trademark designations and their owners appears on

p. Xvi.

Cover designed by Crayon Design of Henley-on-Thames

and printed by The Riverside Printing Co. (Reading) Ltd.

Typeset by CRB Typesetting Services, Ely, Cambs.

Printed and bound in Great Britain by T.J. Press, Padstow, Cornwall.

-

First printed 1989. "'.; -

British Library Cataloguing in Publication Data
Burns, Alan
Real-time systems and their programming languages
1. Real time computer systems. Ptogramming languages
I. Title II. Wellings, Andrew e
005.13 o

ISBN 0-201-17529-0

Library of Congress Cataloging-in-Publication Data
Burns, Alan
Real-time systems and their programming languages / Alan Burns,
Andrew J. Wellings.
. cm.
Includes bibliographical references.
ISBN 0-201-17529-0
1. Real-time data processing. 2. Real-time programming.
3. Programming languages (Electronic computers) 1. Wellings,
Andrew J. II. Title.
QA76.54.B87 1990
004’.33--dc20
89-17930
CIp

Preface

In 1981 a software error caused a stationary robot to move suddenly, with
impressive speed, to the edge of its operational arca A nearby worker was
crushed to death.

This is just one example of the hazards of embedde: real-time
systems. Unfortunately, it is not an isolated incident. Every month the
newsletter Software Engineering Notes has | ages of examples of events in
which the malfunctioning of real-time systems has put the public or the
environment at risk. What these sobering descriptions illu:.rate is that
there is a need to take a system-wide view of embedded systems. Indeed, it
can be argued that there is a requirement for real-time . stems to be
recognized as a distinct engineering discipline. This book is .. contribugion
towards the development of this discipline. It cannot, of course, cover all
the topics that are apposite to the study of real-time systems engineering; it
does, however, present a comprehensive description and assessment of the
programming languages used in this domain. Particular emphasis is placed
on language primitives and their role in the production of reliable, safe and
dependable software.

Audience

The book is aimed at Final Year and Masters students in Computer Science
and related disciplines. It has also been written with the professional
software engineer, and real-time systems engineer, in mind. Readers are
assumed to have knowledge of a sequential programming language, such as
Pascal, and to be familiar with the basic tenets of software cngmceqng
The material presented reflects the content of courses developed over a
number of years by the authors at their resp.ctive universitics. These
courses specifically address real-time systems and their programming
languages.

T PREFACE
Structure and content

In orde. to give the chapters continuity three programming languages are
considered in detail: Ada, Moduia-2 and occam 2. These Tangyages have
been chosen because they are actually used for software production. Other
theoretical or experimental languages ate discussed when they offer prim

. tives not.available within the core languages. Practitioners who are pri-

marily interested in only one of these language should find sufficient
material for their needs. The authors believe that a full appreciation of a
language like Ada (say) can only be obtained throtigh a comparative study
of its facilities.

In all, the book contains 17 chapters, the first 11 of which are loosely
organized into the following four groups. Chapters 1 through 4 represent
an extended introduction. The characteristics and requirements of real-
time systems are presented, then an overview of the design of such:systems
is given. Design is mot the primary focus of this book; nevertheless, it is
important to disciss- implementation within an appropriaté context — this
chapter attempts to provide such a context. Also considered in this chapter
are general criteria by which languages can be assessed. Chapters 3 and 4
consider basic language structures through mﬁons on programming in
the small and programming in the large. se chapters also serve to
introduce Ada, Modula-2 and occam 2. Readers familiar with these lan-
guages, and the basic properties of real-time systems, can progress quickly
through these four opening chapters. For other readers the material pre-
sented will help to make the book more self contained.

Chapters S and 6 concern themselves with the production of reliable
software components. Although consideration is given to fauft prevention,
attention is primarily focused on fault tolerance. Both forward and back-
watd error recovery techniques are considered. The use of an qxnﬁnon

handling facility is discussed in Chapter 6. Both resumption and termina-

tion models are described, as are the language primitives found in Ada,
CHlLL and Mesa.
Real-time systems are mherently concurrent, and, therefore, the

study of this aspect of programming languages is fundamental. Chapter 7

introduces the notion of process and reviews the many different models
that are used by language designers. Communication between processes is
considered in the following two chapters. Shared-variable methods are
described including the use of semaphores and monitors. Message-based
mydels are, however, more popular in modern languages; combining as
they do communication and synchronization. These models are covered in
Chapter 9. Peaiticular attention is given to the prlmmves of Ada and
occam 2. ‘ :

It is debatable whether issues of rehablhty or concurrency should
Lave been considered first within the book. Both authors have experi-
mevted with reversing the order and have found little to choose between

[LN

v PREFACE vii

the two possible approaches. The book can in fact be used in either mode
with only one or two topics being ‘out of place’. The decision to cover
reliability first, reflects the authors” belief that safety is the predommant :
requirememst of real-time systems.

The final grouping incorporates Chapters 10 and 11. In general, the
relationship between system processes can be described as either cooperat-
ing (to achieve a commmon goal) or competing (to acquire a shared.
resource). Chapter 10 extends the earlier discussions on fault tolerance by
describing how reliable process cooperation can be programmed. Central’
to this discussion is the notion of an atomic action. Competmg processes
are considered in the following chapter. An assessment is given of different
language features. One important topic here is the distinction between
conditional and avoidance synchronization within the concurrency
model.

The remaining chapters are, essentially, self contained. Temporal
requirements constitute the distinguishing characteristic of real-time sys-
tems. Chapter 12 presents a detailed discussion of these requirements and
of the language facilities and implementation strategies that are used to
satisfy them. Hard real-time systems have timing constraints that must be
satisfind;-soft systems can occasionally fail to perform adequately. Both are
considered within the context of deadline scheduling. The notion of pri-
ority is discussed at length.

Recent advances in hardware and communications technology have
made distributed computer systems a viable alternative to uniprocessor
and centralized systems in many embedded application areas. Although, in
some respects, distribution can be thought of as an implementation.consid-
eration,_issues which arise when applications are distributed raise funda-
mental questions that go beyond mere implementation details. Chapter 13
considers four areas of interest: partitioning and configuration, reliability
in the presence .of processor and communication failure, algosithms for -
distributed control, and multiprocessor and distributed deadline schedul-
ing. This chapter is specifically designed to be self-contained and can be
omitted by students on shorter courses.

. One important requirement of many real-time systenss is that they
incorporate external devices that must be programmed (that is, controlled)
as part of the application software. This low-level programming is - at
variance with the abstract approach to software production tlat character-
izes software engineering. Chapter 14 considers ways .1 which low-level
facilities can be successfully incorporated into high-lev- languages.

A popular misco. _tion surroundmg real-time systems is that they
must be highly efficient. This is not in itself true. Real-time systems must-
satisfy tlmmg constraints (and reliability requirements); citicient yiple-
mentation is one means of extending the realms of possibility, but i: is not
an end in itself. Chapter 15 reviews some of the strategies 'Lat can bc 1sed
to improve the performance of language implementation-

viii PREFACE

The final major chapter of the book is a case study programmed in
Ada. An example from a mine control system is used. Inevitably, a single
scaled-down study cannot illustrate all the issues covered in the previous
chapters: in particular, factors such as size and complexity are not
addressed. Nevertheless, the case study does cover many important aspects
of real-time systems.

All chapters have summaries and further reading lists. Most also
have lists i exercises. These have been chosen to help readers consolidate
their understanding of the material presented in each chapter. They mostly
represent exercises that have been used by the authors for assessment
purposes.

-

Ada, Modula-2 and occam 2

Currently. Ada is under review. The examples in this book conform to the
ANSI/MIL-STD 1815A standard. Modula-2 is defined informally by
Wirth's textbooks. however, there is « move to produce an ISO standard.
The examples in this book conform to the language defined in the second
editbon of Programming in Modula-2. The occam 2 language is still in its
infancy and will no doubt mature over the coming years. The occam?2
examples presented in this book conform to the occam 2 definition given by
INMOS.

To facilitatc easy identification of the three languages, different
presentation styles are used. Ada is presented with keywords in lower case
bold; program identifiers are given in UPPER CASE. Both Modula-2 (and
Modula-1) and occam?2 require keywords to be upper case. As these
languages are easily distinguished the same style of presentation has been
adopted: namely keywords in UPPER CASE (UPPER CASE for occam 2) and Mixed-Case
Wixed-Case for occam?2) identifiers. All other languages have keywords in
lower case.

Braille copies

Braille copies of this book. on paper or Versabraille cassette, can be made .
available. Enquiries should be addressed to Dr Alan Burns, Department of
Computing. University of Bradford, Bradford, West Yorkshire. BD7 1DP.
UK.

Acknowledgements

The material in this book has been developed over the last five years and
presented to many third year and MSc students at the Universities of
Bradford and York. taking Computer Sciznce or Electronics degrees. We

PREFACE ix

would like to acknowledge their contribution to the end product, for
without them this book would never have been written.

Many people have read and commented on a first draft of the book.
In particular we would like to thank: Martin Atkins, Chris Hoggarth, Andy
Hutcheon, Andrew Lister, and Jim Welsh. We would also like to thank our
colleagues at our respective Universities for providing us with a stimulating
environment and for many enlightening discussions, particularly Ljerka
Beus-Dukic, Geoff Davies, Tohn McDermid, Gary Morgan, Rick Pack,
Rob Stone and Hussein Zedan.

During 1988 Alan Burns was on sabbatical at the Universities of
Queensland and Houston. We would like to thank all staff at these institu-
tions particularly Andrew Lister, Charles McKay and Pat Rogers.

This book would not have been possible without the use of elec-
tronic mail over JANET. We would like to thank the Computer Board of
the United Kingdom University Grants Council and the Science and
Engineering Research Council for providing this invaluable service.

Finally, we would like to give special thanks to Sylvia Holmes and
Carol Burns. Sylvia for the many hours she has spent painstakingty proof-
reading the final manuscript and Carol for the many evenings she has.
tolerated our meetings and discussions.

Alan Burns
Andy Wellings

Novembcr§?89

-

Y

Contents

Preface

Chapter 1 Introduction to Real-Time Systems

1.1 Definition of '. real-time system

1.2 Examples of real-time systems

1.3 Characteristics of real-time systems
Summary
Further reading

Chapter 2 Designing Real-time Systems

2.1 Levels of notation
2.2 Requirements specification
2.3 Design activities
2.4 Design methods
2.5 Implementation
2.6 Testing
2.7 Prototyping
2.8 Human-computer interagtion
2.9 Managing design '
Summary
Further reading
Exercises .

Chapter 3 ;| Programming in the Small

3.1 Overview of Ada, Modula-2 and occam 2
3.2 Lexical conventions
3.3 Overall style
3.4 Data types
3.5 Control structures
3.6 Subprograms
. Summary
Further reading
Exercises

AW WN -

P

« 22d2upLas &

VL .

Xii CONTENTS

Chapter 4

4.1
4.2
4.3
4.4
4.5

Chapter §

5.1
5.2
53
5.4
5.5
5.6

5.7
5.8
5.9
5.10

Chapter 6

6.1
6.2
6.3
6.4
6.5

Chapter 7

7.1
7.2
7.3
7.4

Programming in the Large

Information hiding

Separate compilation

Abstract data types’

Reusability

Integrated project support environments .
Summary

Further reading

Exercises

Reliability and Failt Tolerance

Reliability, failure and faults

Fault prevention and fault tolerance

N-version programming

Software dynamic redundancy

The recovery block approach to software fault tolerance
A comparison between N-version programming and
recovery blocks

Dynamic redundancy and exceptions

Measuring and predicting the reliability of software
Safety and reliability

Dependability

Summary

Further reading

Exercises

Exceptions and Exception Handling

Exception handling in older real-time languages
Modern exception handling

Exception handling in Ada, Modula-2 and occam 2
Exception handling in other languages

Recovery blocks and exceptions

Summary

Further reading

Exercises

Concurrent Programming

The notion of process
Concurrent execution
Process representati(;n

A simple embedded system
Summary

Further reading

Exercises

7

72
75
78
82
87
88
89
89

91

93
94

104
110

115
116
118
119
120
121
123
123

125

126
129
136
146
149
152
153
154

157

158
160
163
176
180
182
182

Chapter 8

8.1
8.2
83
8.4
8.5

Chapter 9

9.1
9.2
9.3
9.4
9.5
96
9.7
9.8
9.9

Chapter 10

10.1
10.2
10.3
10.4
10.5

Chapter 11

11.1
11.2
11.3
11.4
11.5
11.6

CONTENTS

Shared Memeory-based Synchronization and Communication

Mutual exclusion and condition synchronization
Busy waiting

Semaphores

Conditional critical regions

Monitors

Summary

Further reading

Exercises

Message-based Synchronization and Communication

Process synchronization
Process naming

Message structure

Message passing semantics of Ada and occam 2
Selective waiting

Modula-2 and message passing
The CHILL language

Remote procedure call
Process idioms

Summary

Further reading

Exercises

Atomic Actions, Concurrent Processes and Reliability

Atomic actions

Atomic actions in concurrent languages

Atomic actions and backward error recovery

Atomic actions and forward error recovery

R “covery and concurrent processes in real-time languages
Summary

Further reading

Exercises

Resource Control

Resource control and atomic actions
Resource management

Expressive power and ease of use
Asymmetric naming and security
Resource usage

Deadlock

Summary

Further reading

Exercises

xiti

185

186
187
194
212
214
222
223
223

227

228
229
230
231
238
251
253
256
257
261
263
263

265

266
21
279
283
285
289
291
291

293

294
294
295
307
308
309
316
317
318

xiv CONTENTS

Chapter 12

12.1
12.2
12.3
12.4
12.5

Chapter 13

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9

Chapter 14

14.1
14.2
14.3
14.4
14.5

Chapter 15

15.1
15.2
15.3

Real-time Facilities

Access to a clock
Delaying a process
Programming timeouts .
Deadline specification and scheduling
Fault tolerance

- Summary LR

Further reading
Exercises

t

Distributed Systems

Distributed system definition
Overview of issues
Partitioning and configuration
Virtual nodes and Ada
Virtual nodes and Modula-2
Virtual nodes and occam 2
Reliability

Distributed algorithms

Deadline scheduling in a multiprooéssor and distributed

environment
Summary
Further reading
Exercises

Low-level Programming

Hardware input/output mechanisms
Language requirements

The shared-memory model of device handling
The message-based model of device handling
Older real-time languages

Summary

Further reading

Exercises -

EfMiciency of Implementation”~
Motivation

Problem areas

Improving efficiency’ -
Summary '

Further reading

Exefcisés

321

322
327
329
333 -

- 356

363
365
365

369

370
37
372
378

393
403

417
425
427
428

431

432
439
439

4an
472
473
47 -

477

4717
479
481
494~
494
495

Chapter 16

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8

Chapter 17
AM A
Bibidgraphy

i

Index

A Case Study in Ada

Mine draifiage
The PAMBLA method

Top-level descripffon
First-level decomposition
Pump controller v
Environmental monitor
Real-time control

Fauit tolerance and distribution
Summary -
Further reading

Exercises

Conclusions

516

525 -

527 .
528
528

529°
s3s
553

563

Chapter 1
Introduction to Real-tlme
Systems

1.1 Definition of a real-time 1.3 ..Characteristics of real-time

system systems
1.2 Examples of real-time Summary
systems - Further reading

As computers become smaller, faster, more reliable and
cheaper so their range of application widens. Built initially as
equation solvers their influence has extended into all walks of
lite from washing machines to air traffic control. One of the
fastest expanding areas of computer exploitation is that involv-
ing applications, whose prime function is not that of informa-
tion processing, but which nevertheless require information
processing in order to carry out their prime function. A
microprocessor-controlled washing machine is a good exam-
ple of such a system. Here the prime function is to wash
clothes; however, depending on the type of clothes to be
washed, different ‘wash programs’ must be executed. These
types of computer applications are generically called real-
time or embedded. They place particular requirernents on the
computer languages needed to program them — as they have
different characteristics from the more traditional information
processing systems.

This book is concerned with embedded computer sys-
tems and their programming languages. It studies the particu-
lar characteristics of these systems and discusses how some
modern real-time programming languages have evolved.

2 REAL-TIME SYSTEMS AND THEIR PROGRAMMING LANGUAGES

1.1 Qefinition of a real-time system

Before proceeding further it is worth trying to define the phrase ‘real-time
system’ more precisely. There are many interpretations of the exact nature
of a real-time sygem; however, they all have in common the notion of
~ response time — time- taken for the system to generate oytput from
some associated input. The Oxford Dictionary of Computing gwes the
following definition of a real-time system. -

Any-syctem in which tbe time.at which outout is produced is
significant. This is usually because the input corresponds to some .,
movement in the physical world, and the output has !> relate to

that same movement. The lag from input time to out,ut t i > must
be sufficiently small for acceptable timeliness.

Here, té word timgliness is taken in the context of the iotal system.
" For example; th a ‘missifaguidance system output is required within a few
milliseconds, whereas in a computer-controlled car assembly line the
re wponse may be required only w ithin a second.
Yagung (;ﬁﬂ) défines a realstime system to be:

any infossation processing activity or system which has to respornd
to externslly-generated input stimuli within a finite and specnﬁgd
’penod

(‘

In their M general sense both these definitions cover a very wide
range of computer activities. For example, an operaung system like UNIX
may be considesed teal time in that when a user enters a command he/she
will exput{ response Within a few seconds. Fortunately, it is ysuaily not a
disaster if the rgdponse is.not forthcoming. These types of systems cax;fe
distinguishc d from those where failure to respond can be considered ju
bad " as a WIQRg response. Indeed for some, it is this aspuct that dis-
tinguishes a real-tigne system from others where response time is important
buf ot crucial. spcpently, the correctness of a regl-time system depends
not only on the ngcal result of the computatioy tioy, bs also on the time at
which the results are produced. Practitioners i in: fhc field of real-time com-
puter system design often distinguish between hard and soft real-time
systems. Hard real-time systems are those whete it is gbsolutely imperative
that responses occur within ghe specified d ine. Soft real-time systems
are those where response times are impo but the system will still
function correctly if deadlines:dre occasi y m;ssed Soft systems can
themselves be distinguished fafm interactive one$in which there are no
explicit deadlines. For examplg a flight control system of a combat aircraft
is a hard real-time system becayse a missed deadline could lead to a
catastrophe, whereas a data amdmon system for a process control
application is soft as it may be de | to sample an imput sensor at regular

4 lNTRODUCTIbN T6 REAL-TIME SYSTEMS 3

intervals but to tolerate intermittent delays. In this book the term real-time
system is used to mean both soft and hard real time. Where discussion is
concerned specifically with hard real-time systems the term will be used
explicitly.

directly to some physical equipment angd is dedicated to monitoring or
controlling the operation of that equipment. A key feature of all these
applications is the role of the computer as an information processing
component within a larger engineering system. It is for this reason that
such applications have become known as embedded computer systems. The
terms ‘real-time’ and ‘embedded’ will be used interchangeably in this book.

1.2 Examples of real-time systems

Having defined what is meant by embedded systems some examples of
their use are now given.

1.2.1 Process oonﬁol

Tue first use of a computer as a component in a larger engineering system
occurred in the process control industry in the early 1960s. Nowadays, the

use of microprocessors is the norm. Consider the simple example, shown in.

Figure 1.1, where the computer performs a single activity: that of ensuring
an even flow of liquid in a pipe by controlling a valve. On detecting an
increase in flow the computer must respond by altering the valye angle; this
response must occur within a finite period if the equipment at the receiving

e

Flow meter
| 2
| Input flow _—
{ reading
1
| .
Time Processing Valve
i o
Output valve B o
angle 3 -
Computer Pipe

Figure 1.1 A fluid control system.

In a hatd or soft real-time system the computer is usualfly interfaced '

REAL-TIME SYSTEMS AND THEIR PROGRAMMING LANGUAGES

Operatot(»
control

Process
control
computer

k- @ L

Chem(ljcals Fimshed
ma::n. " products
erials | Valve Temperature Stirrer
transducer
Plant

Figure 1.2 A process control system.

end of the pipe is not to become overloaded. Note that the actual response
may involve quite a complex computation in order to calculate the new
valve angle.

This example shows just one component of a larger control system.
Figure 1.2 illustrates the role of a real-time computer embedded in a
complete process-control environment. The computer interacts with the
equipment using sensors and actuators. A valve is an example of an
actuator and a temperature or pressure transducer is an example of a
sensor. (A transducer is a device that generates an electrical signal that is
proportional to the physical quantity being measured.) The computer
controls the operation of the sensors and actuators to ensure that the
correct plant operations are performed at the appropriate times. Where
necessary, analogue to digital and digital to analogue converters must be
inserted between the controlled process and the computer.

1.2.2 Manufacturing

The use of computers in manufacturing has become essential over the last
few years in order that production costs can be kept low and productivity
increased. Computers have enabled the integration of the entire manufac-
turing process from product design to fabrication. It is in the area of
production control that embedded systems are best illustrated. Figure 1.3
represents. diagrammatically, the role of the production control computer

