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A course in combinatorics

This is the second edition of a popular book on combinatorics, a subject
dealing with ways of arranging and distributing objects, and which involves
ideas from geometry, algebra and analysis. The breadth of the theory is
matched by that of its applications, which include topics as diverse as codes,
circuit design and algorithm complexity. It has thus become essential for
workers in many scientific fields to have some familiarity with the subject.
The authors have tried to be as comprehensive as possible, dealing in a uni-
fied manner with, for example, graph theory, extremal problems, designs,
colorings and codes. The depth and breadth of the coverage make the book
a unique guide to the whole of the subject. The book is ideal for courses
on combinatorial mathematics at the advanced undergraduate or beginning
graduate level. Working mathematicians and scientists will also find it a
valuable introduction and reference.

J.H. VAN LINT is Emeritus Professor of Mathematics at the Technical Uni-
versity of Einhoven.

R.M. WILSON is Professor of Mathematics at the California Institute of
Technology.



Preface to the first edition

One of the most popular upper level mathematics courses taught
at Caltech for very many years was H. J. Ryser’s course Combina-
tortal Analysis, Math 121. One of Ryser’s main goals was to show
elegance and simplicity. Furthermore, in this course that he taught
so well, he sought to demonstrate coherence of the subject of com-
binatorics. We dedicate this book to the memory of Herb Ryser,
our friend whom we admired and from whom we learned much.

Work on the present book was started during the academic year
1988-89 when the two authors taught the course Math 121 together.
Our aim was not only to continue in the style of Ryser by showing
many links between areas of combinatorics that seem unrelated,
but also to try to more-or-less survey the subject. We had in mind
that after a course like this, students who subsequently attend a
conference on “Combinatorics” would hear no talks where they are
completely lost because of unfamiliarity with the topic. Well, at
least they should have heard many of the words before. We strongly
believe that a student studying combinatorics should see as many
of its branches as possible.

Of course, none of the chapters could possibly give a complete
treatment of the subject indicated in their titles. Instead, we cover
some highlights—but we insist on doing something substantial or
nontrivial with each topic. It is our opinion that a good way to
learn combinatorics is to see subjects repeated at intervals. For
this reason, several areas are covered in more than one part of the
book. For example, partially ordered sets and codes appear several
times. Enumeration problems and graph theory occur throughout
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the book. A few topics are treated in more detail (because we like
them) and some material, like our proof of the Van der Waerden
permanent conjecture, appears here in a text book for the first
time.

A course in modern algebra is sufficient background for this book,
but is not absolutely necessary; a great deal can be understood
with only a certain level of maturity. Indeed, combinatorics is well
known for being “accessible”. But readers should find this book
challenging and will be expected to fill in details (that we hope
are instructive and not too difficult). We mention in passing that
we believe there is no substitute for a human teacher when trying
to learn a subject. An acquaintance with calculus, groups, finite
fields, elementary number theory, and especially linear algebra will
be necessary for some topics. Both undergraduates and graduate
students take the course at Caltech. The material in every chapter
has been presented in class, but we have never managed to do all
the chapters in one year.

The notes at the end of chapters often include biographical re-
marks on mathematicians. We have chosen to refrain from any
mention of living mathematicians unless they have retired (with
the exception of P. Erdds).

Exercises vary in difficulty. For some it may be necessary to
consult the hints in Appendix 1. We include a short discussion of
formal power series in Appendix 2.

This manuscript was typeset by the authors in ApS-TRX.

JJH.v.L, RM.W.
Eindhoven and Pasadena, 1992



Preface to the 2nd edition

The favorable reception of our book and its use for a variety of
courses on combinatorial mathematics at numerous colleges and
universities has encouraged us to prepare this second edition. We
have added new material and have updated references for this ver-
sion. A number of typographical and other errors have been cor-
rected. We had to change “this century” to “the last century” in
several places.

The new material has, for the most part, been inserted into the
chapters with the same titles as in the first edition. An exception
is that the material of the later chapters on graph theory has been
reorganized into four chapters rather than two. The added material
includes, for example, discussion of the Lovisz sieve, associative
block designs, and list colorings of graphs.

Many new problems have been added, and we hope that this last
change, in particular, will increase the value of the book as a text.
We have decided not to attempt to indicate in the book the level
of difficulty of the various problems, but remark again that this
can vary greatly. The difficulty will often depend on the experience
and background of the reader, and an instructor will need to decide
which exercises are appropriate for his or her students. We like the
idea of stating problems at the point in the text where they are
most relevant, but have also added some problems at the end of
the chapters. It is not true that the problems appearing later are
necessarily more difficult than those at the beginning of a chapter.

A number of the hints and comments in Appendix 1 have been
improved.
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Preparation of the second edition was done during a six-month
visit to the California Institute of Technology by the first author
as Moore Distinguished Scholar. He gratefully acknowledges the
support of the Moore Foundation.
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1
Graphs

A graph G consists of a set V' (or V(G)) of vertices, a set E (or
E(QG)) of edges, and a mapping associating to each edge e € E(G)
an unordered pair z,y of vertices called the endpoints (or simply
the ends) of e. We say an edge is incident with its ends, and that
it joins its ends. We allow z = y, in which case the edge is called
a loop. A vertex is isolated when it is incident with no edges.

It is common to represent a graph by a drawing where we repre-
sent each vertex by a point in the plane, and represent edges by line
segments or arcs joining some of the pairs of points. One can think
e.g. of a network of roads between cities. A graph is called planar
if it can be drawn in the plane such that no two edges (that is, the
line segments or arcs representing the edges) cross. The topic of
planarity will be dealt with in Chapter 33; we wish to deal with
graphs more purely combinatorially for the present.

edge ends
a z,2
b Y, w
c T,z
d zZ,W
e zZ,w
f T,y
g Z,w
Figure 1.1

Thus a graph is described by a table such as the one in Fig. 1.1
that lists the ends of each edge. Here the graph we are describing
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has vertex set V = {z,y, z,w} and edge set £ = {a,b,c,d,e, f,g};
a drawing of this graph may be found as Fig. 1.2(iv).

A graph is simple when it has no loops and no two distinct edges
have exactly the same pair of ends. Two nonloops are parallel
when they have the same ends; graphs that contain them are called
multigraphs by some authors, or are said to have ‘multiple edges’.

If an ordered pair of vertices is associated to each edge, we have
a directed graph or digraph. In a drawing of a digraph, we use an
arrowhead to point from the first vertex (the tail) towards the sec-
ond vertex (the head) incident with an edge. For a simple digraph,
we disallow loops and require that no two distinct edges have the
same ordered pair of ends.

When dealing with simple graphs, it is often convenient to iden-
tify the edges with the unordered pairs of vertices they join; thus
an edge joining x and y can be called {z,y}. Similarly, the edges
of a simple digraph can be identified with ordered pairs (z,y) of
distinct vertices.

Y

oy

(1) graph (ii) graph with loop (iii) digraph (iv) multiple edges

Figure 1.2

There are several ways to draw the same graph. For example,
the two graphs of Fig. 1.3 are essentially the same.

We make this more precise, but to avoid unnecessarily technical
definitions at this point, let us assume that all graphs are undirected
and simple for the next two definitions.

We say two graphs are isomorphic if there is a one-to-one cor-
respondence between the vertex sets such that if two vertices are
joined by an edge in one graph, then the corresponding vertices are
joined by an edge in the other graph. To show that the two graphs
in Fig. 1.3 are the same, find a suitable numbering of the vertices
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in both graphs (using 1,2, 3,4,5,6) and observe that the edge sets
are the same sets of unordered pairs.

A D

Figure 1.3

A permutation o of the vertex set of a graph G with the property
that {a, b} is an edge if and only if {o(a),o(d)} is an edge, is called
an automorphism of G.

Problem 1A. (i) Show that the drawings in Fig. 1.4 represent the
same graph (or isomorphic graphs).

(ii) Find the group of automorphisms of the graph in Fig. 1.4.
Remark: There is no quick or easy way to do this unless you are
lucky; you will have to experiment and try things.

v

Figure 1.4

The complete graph K, on n vertices is the simple graph that
has all (}) possible edges.

Two vertices a and b of a graph G are called adjacent if they are
distinct and joined by an edge. We will use I'(x) to denote the set
of all vertices adjacent to a given vertex x; these vertices are also
called the neighbors of x.
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The number of edges incident with a vertex x is called the degree
or the walency of x. Loops are considered to contribute 2 to the
valency, as the pictures we draw suggest. If all the vertices of a
graph have the same degree, then the graph is called regular.

One of the important tools in combinatorics is the method of
counting certain objects in two different ways. It is a well known
fact that if one makes no mistakes, then the two answers are the
same. We give a first elementary example. A graph is finite when
both E(G) and V(G) are finite sets. We will be primarily con-
cerned with finite graphs, so much so that it is possible we have

occasionally forgotten to specify this condition as a hypothesis in
some assertions.

Theorem 1.1. A finite graph G has an even number of vertices
with odd valency.

PRrooOF: Consider a table listing the ends of the edges, as in Fig.
1.1. The number of entries in the right column of the table is twice
the number of edges. On the other hand, the degree of a vertex z
is, by definition, the number of times it occurs in the table. So the
number of entries in the right column is

(1.1) )" deg(z) = 2|E(G).
z€V(G)
The assertion follows immediately. a

The equation (1.1) is simple but important. It might be called
the ‘first theorem of graph theory’, and our Theorem 1.1 is its first
corollary.

A subgraph of a graph G is a graph H such that V(H) C V(G),
E(H) C E(G), and the ends of an edge e € E(H) are the same
as its ends in G. H is a spanning subgraph when V(H) = V(G).
The subgraph of G induced by a subset S of vertices of G is the
subgraph whose vertex set is S and whose edges are all the edges
of G with both ends in S.

A walk in a graph G consists of an alternating sequence

Ty, €1,%1,€2,L2, ..., Tk-1, €k, Tk



