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" INTRODUCTION

There is a resurgence of research activity in nonlinear dynamics. Significant progress
in qualitative techniques for finite and infinite dimensional systems together with the astro-
nomical advances in computational powers is enabling better utiderstanding of complex
phenomena. Such progress until now was either unattainable or too cumbersome to attempt.
In recent years, specifically, a great deal of progress has been made in the study of stability
and chaotic behavior of nonlinear systems. Still many more challenging problems await reso-
lution. The keen interest in this field is primarily due to the fact that the satisfactory solution
of such problems is bound to have significant impact on a wide variety of physical and engineer-
ing applications. These include multi-stable chemical and biological systems, electronic and
optical switches, stru~ture of turbulence, oscillation in aeroelastic structures, feedback con-
trols and communication and power systems. .

Recognizing the importance of this field, the Mathematical Sciences Division, U.S, Army
Research Office organized an interdisciplinary workshop on Chaos in Nonlinear Dynamical
Systems. The workshop was held on March 13-15, 1984 at the Army Research Office, Research
Triangle Park, North Carolina, attended by more than sixty mathematicians, engineers, phys-

 icists and chemists. This book is based on the papers presented at this workshop.

In Chapter I, Newhouse discusses various mathematical notions useful in the descrip-

“tion of chaotic motions. Pseudorandom phenomena have recently been shown to be relevant

to a variety of engineering applications in place of stochastic models commonly used in com-
munication and control theory, and structural analysis. The problem of generating pseudoran-
dom processes using models which are sufficiently simple so as to allow some quantitative
analysis is, therefore, drawing much attention. In Chapter II, Brockett and Cebuhar, describe
a piecewise linear third order autonomous differential equation to seek new insights into par-
ticularly simple mechanisms which appear to generate chaos in such systems. °

The next three chapters are devoted to the development and application of the Poincaré-

" Melnikov-Arnold method. For instance, in Chapter ITI, Marsden proves existence of chaos

in the sense of Poincaré-Birkhoff-Smale horseshoes, followed in the next chapter by Slem-
rod, who discusses the application of this approach to chaos to the problem of equilibrium
distribution of a van der Waals fluid undergoing spatially thermal variations. Using similar
techniques, in Chapter V, Salam and Sastry describe the complete dynamics of the Joseph-
son junction circuit and provide a complete bifurcation diagram of the a.c. forced junction.
This is done by establishing analytically the existence of chaos for certain parameter ranges
in the dynamics of such systems. S A
In Chapter VI, Levi considers the so-called beating modes i g junction cir-
cuits. He provides qualitative analysis of these systems and gives1 Jical characteriza-
tion of these modes. The perturbed Sine-Gordon equation models’ the dynamics of long
Josephson tunnel junction. In Chapter VII, Christiansen discusses some of the soliton dynamic
states for this équation and describes computer experiments exhibiting hysteresis phenomena
and chaotic intermittency between soliton dynamics states occurring as a result of applied
external bias. In the following chapter, Kopell discusses the influence of symmetry proper-
ties on coherence and chaos in a chain of weakly coupled oscillations. This study is partly
motivated by a biological application. . ‘
Existence of multiple stable states has importance in a variety of applications. Studies
in optical bistability, for instance, have opened up new exciting possibilities of using such
logic elements as switches in optical computing. In Chapter IX, McLaughlin, Moloney and

vii



viii . INTRODUCTION

Newell summarize some recent results on coherence and chaos in optical bistable laser cavi-
ties. Next, Moss explores two very different types of switches and their behavior when they
are subject t¢ large amplitude external interference. In Chapter X1, Arecchi investigates multi-
stability and chaos in quantum optics. Three experimental situations are described that exem-
plify onset of chaos. Next, Ackerhalt and Milonni describe how chaotic dynamics of molecular
vibrations explain the dependence of multi-photon absorption on pulse energy rather than
intensity. In Chapter XIII, Casati and Guarneri investigate the chaotic properties of quantum
systems under external perturbations.

In the fast two chapters, the authors discuss implications of chaotic dynamics to turbu-

" lent flows and oscillation in mechanical systems. In Chapter XIV, Manley shows how recent
research on the asymptotic properties of the Navier-Stokes equation is valuable in the use
of computers as experimental tools in the study of the dynamics of fluids. He shows how the
conventional estimate of the number of degrees of freedom of turbulent flows can be obtained
from such asymptotic properties. In the last chapter, Dowel! and Pierre look at the fundamental
mechanisms in nonlinear mechanics that lead to chaotic oscillations. Through specific exam-
ples, they identify two categories of systems. In the first category the chaotic oscillations arise
as a result of instability of the system to large finite disturbance while in the second category
the chaos results from instability with respect to infinitesimal disturbances, ,

1 thank all of those’ whose efforts have helped both to make the workshop successful and
to bring this book into its final form. I particularly appreciate the contributors to this vol-
ume. Special thanks are due to Mrs, Frances Atkins, Mrs. Mary Mitchell and Mrs. Brenda
Hunt of the Army Research Office for the diligent cooperation through all phases of this work-

shop and the preparation of this book.

JaGDiSH CHANDRA
- September 1984
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UNDERSIANDING CHAOTIC DYNAMICS
S. E. NEWHOUSE*

Abstract: Various mathematical notions uséful in thé description of
chaotic motion are discussed. Emphasis is given to hyperbolic
attractors and Bowen-Ruelle-Sinai measures. -

We describe here certain mathematical structures, results, and
methods which are useful for understanding chaotic dynamical systems.
Réughly speaking, a chaotic dynamical system is one which has
presuﬁabiy many) solutions which display highly aperiodic or "erratic
time dependence. A glance at recent physical and engineering litera-
ture (e;g. Holmes3),‘8winney8?) reveals an abundance of physical
systems with such motions. For reaéons of space we will mainly deal
with discrete dynamical systems (i.e. mappings from é subset M of
Euclidean space to itself). Most of the results we discuss here have
counterparfs for systems with continuous time. For more information

' 4,5,6,7),

on this subject as well as related ideas, we refer to Newhouse

2)

Farmer et all), and Guckenheimer and Holmes
We consider a smooth manifold M (possibly with boundary) and
a twice differentiable mapping f from M to M. We assume f is

one-to-one and the inverse map f-l: f(M) >M is also twice

*Department of Mathematics, University of North Carolina, Chapel
Hill, NC 27514
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=~

differentiable. Given x €M, consider the positive orbit
2
: 0+(x) = {x,f(x),f (x),...} of x and the g-limit set
w(x) =.w(x,f) = {y ¢ M: there is a sequence n, <mn, < ... such that

n
f ix +y as. 1 + =}, Note that if 0+(x) is tounded, then w(x)

is a closed, bounded set, and f(w(x)) = w(x). In general, we are

interested in degcribing w(x,f) for as many x and £ as possible.

A simple situation arises when each w(x,f) is a periodic orbit

.

for x € M.. Then each initial sfate tends toward a periodic orbit.
Such an f 1s not chaotic. _

A first instance in wh;ch b3 migyﬁ Pe called chaotic is when
there are uncountably many points X for;which m(x,ﬁ) is also,
uncountable. This can occur for relatively mild £: let
'Sl be the unit circle ‘in nf, and let f = S1 + S1 be defined by
f(q,v) = (u cos 2ma - v sin Zna,-u sin 2na + v cos 2ra) for
(u,v) € s! and ; irratiﬁnal. Thus, £ 1is just akrotation

]
throughlghgle 2ra. It is well-known that w((u,v),f) = S1 for
eaEh (u,v) e'sl. An additional condition frequenfly encountered
in chaotic systems is "gensitive dependence on 1nitia1.conditions."
This could be defined as,folloﬂa-,‘Lgt..éﬁlnyl..den9ﬁﬁuth§;n. ;PM“
distanée between x and y: A point x 'exhibi:s gensitive

i co- . A\l
dependence on 1n;1tial conditions if there are an a > 0 and a

constant C > 0 suchﬂthat for any € > 0 and any positive integer

n > 0, there is‘a point -y such that
(1) d(x,y) <€
(2) d(f"x,ij)Z Ceajd(x,y) for 0< 3 <n.

The infinitesimal version of this is more easily defined: there is
: ' L}




UNDERSTANDING CHAOTIC DYNAMICS

a vector v tangent to M at x such that 1lim sup % log ITxfnv[ > 0.
. n > o N

Here Tx'fn is the derivative .(linear approximation) to 1 ats x

v

and |w| the norm of a vector w. The latter condition on ¥ and
v is frequently referred to as "(x,v) has a positive Lyapunov. |
exponeht.". Sometimes one says that x has a positive‘Ly;punov
exponent if there is a v such that (x,v)'.has one. Again thefe
are simple mappings which satisfy this coﬂéition. Let f: ng -> n?
be defined by f(u,v) = (A_lu,XV) with 1 < x.: Any point in 18
has a positive exponent. All the points in Rx {0} have in
addition, bounded positive orbits.

If we put the above definitions togetﬁer we get a better
definition of a chaotic f£: say f: M + M 'is chaotic if there is
a closed bounded subset V of M with non-empty interior such that

(1) -f maps V iato its interior .

(2) there are uncountably many points x in V for which

w(x) is uncountable and x has a positive Lyapunov
exponent.
In the known examples where £ is chaotic in this last sense and
the chaoé'is péfsiétént in the sense that any g Cl near f also
satisifies (1) and (2), one has some intefesting'beﬁavibr for f.
For instance, f must‘have infinieﬁiy many periodic orbits in V,

4)

and f must have transverse homociinic points (see Newhouse ', and

~Guckenhéimer-ﬂolme825 in V. | Lo
We wish to consider further notions of chaos. There is the

frequently used term "strange attractor."” This term was created by
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Ruelle and Takensg), and has been modified by various authors
subsequently. One could define such an object as follows. A closed

set A cM is invariant if f(A) = A. The set A is an attractor

=

if there is an open gset U > A such that f(U) < U and @ fn(U) =
The attractor is straﬁge if it has a compliqated topology; e.g. 1if
it is not a manifold. Frequently, one adds further indecomposability:
conditions as well. Ome such condition is that there is a point

x in A whosge orbit is dense in A. The basin of the attractor

.A 1is the set B(A) = | <0 fn(U) = {x € M: w(x) CFA}. The.idea of
Ruelle and Takens was Ehat typical points in the basin of a strange
attractor.would have a complicated asymptotic béhavior, and that such
objects could pro#ide models for chaotic motion. In particular, the
continuous time versions of such objects in certain infinite
dimensional gpaces could providemodelsforbturbﬁlence in fluids.
Experiments in a.number of situations have lent credence tc this
idea. Our above notions of chaos are independent of the notion of

a strange attractor but they are certainly consistent with it: one
merely has to considér V as a subset of B(A).

In addition to (1) and (2) above, there are further conditions
one could put on the set V. For instance, one might require the
points 'x iﬁ (2) to be dense in«‘V or to have positive or full
volume in V. 1If theylatter condition halds, one could ask for a
description of statistical properties of 0+(x) for typical x
‘in V. For example, how are the points {x,fx,...,fnx} distributed

for typical x in V and large n? What is the structure of time
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n-1
averages 1 Z w(ka) for continuous ¢, large n, and typical x?'
k=0

These questions and many more have been answered in the case when V
is in the basin of attraction of a hyperbolic attractor. Such objects
provide mathematically understood models of chaotic behavior. A
large amount of current research in dynamics attempts to extend the
wathematics of hyperbolic attractors to more general situations. See
Newhouse7) for related ideas.

It is our contention that much can be gained toward understanding
chaotic dynamics by the careful study of hyperbolic attractors. That
is, many of the phenomena arising in such attractors also occur in
many other chaotic situations. There are several rigorous results
supporting this contention although much work remains to be done.

Let us now recall the notion of a hyperbolic attractor, and
give some typicél examples.

A cloged bounded invariant set A 1is hyperbolic if there are
constants C > 0, 0 < A < 1, ~and for each x € A, there is a
splitting TxM = E: ® Ei such that

s s
(@) veE & T E(W) € Eg and

u

u.%
vV € Ex Txf(v) € Ef(x)
(b) n20 and v e E:-::Q ITxfn(v)| < ¢ A%v] and

n20 and Ve E:,-_—:> lTxf-n(v)‘ < € A"v].

Condition (a) describes invariance of the infinitesimal subspaces

E: and E:, and condition (b) describes exponential forward

-~
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contraction of vectors in E: and exponential backward contraction

of vectors in E:. An attractor which is also a hyperbolic set is

a hyperbolic attractor. Let us give some examples.

1. Let ]f = {(u,v)} be the Euclidean plane, and let

4

A{u,v) = (2u + v, u + v).

Thus A 1is a linear map with matrix (f%), determinant i,
3+/5 -1 3-4/5

and two real eigenvalues A = > y A =T with

eigenspaces E,, and E -1’ respectively. Let Tz = RZ/Z2 be

A .
the two-dimensional torus where 22 is the integer lattice in

l?. The map A 1induces a diffeomorphism A from T2 to
itself. Let 7: = ]g -+ T2 be the natural projection. Let
X € T2 and let x € 13 be such that n(;) = x. Let
E,(x)(E _; (x)) be the line in § through x parallel to
A - —
E(E .). Let E°> = a(E ,(x)) and E- = m(E (X)). It is
A k-l b'¢ A-l X A
easily checked that Ei and E: are independent of the
- -1
choice of % ¢ 7 (x) and satisfy conditions (a) and (b)
with A = f. 'Then, all of T2 is a hyperbolic attractor,

and B(Tz) - Tz.
Let £ be the set of complex numbers. Let

D={wetk=|ws1}, aﬁd let s' = (z e & lz] = 1}.

Thus, S1 is the unit circle and D is the closed unit disk.

. 1 :
Lét S » D be the product space which@ye think of. as a

solia\térus of revolution in ]?. Letting (xl,yl,zl) be

: 1
coordinktes in Ig, we congider S X:ﬁ

2 .2 2

2)1/2 - a) *+z, <17}

{(x;_.yl:zl): (xi +y,
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where 0 < b < a, and (xl,yl,O) corresponds to

(x1 + /-1 yl,O) tn s x D. The mapping £(z,w)

z

2 1 . .
= (27, 2 + %) maps S x l)2 into its interior as in the.

next figure.

- The largest invariant set A = @ fn(s1 x D) 18 a
hyperbolic attractor of topological dimension 1. In fact,

it looks locally like the product of a Cantor set and an

_interval, .

3. Geodesic (1nett1ai motion o a surface of negative curvature
18 such that the motion on each positive energy surface is

the continuous time analog of a hyperbolic attractor.

Theorem 1 belbw présents some statistical resultd which - —
have been obtained for hypérbolic' attractors.

Recall that a Borel probability measure u on M is
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a non-negative countably additive real-valued get function
defined on o-field of Borel sets in M such that u(M) = 1.
The measure u 1is invariant if u(f-lA) = pu(A) for every
Borel set A. One callg u ergodic if whenevef E is a
Borel set such that f(E) = E- it follows that u(E) = 0 or
1. If u is ?rgodic, then there is a set E with u(E) = 1

such that each orbit in E 1is dense in E. Thus, ergodicity

is a kind o strongiindecomposability‘cohdition. We recall

xé called topologically mixing if for any open sets
u, Vv in M such that UnAh=¢ and VnA=6¢, there
is an integer N > 0 such that n 2 N implies

fn(U nA)n(VnA) = ¢, Thus, topological mixing means that
all large iterates of‘oﬁen sets in 'A (in the relative
topology) get spread around well in A. A hyperbolic
attract&t'cdnfainiﬁg a fixed ﬁbint is, iﬁbfécif Ebpologicaily
mixing. We will say that the hyperbolic attractor is non-
trivial if it contains more than one orbit. It follows that

it must be uncountable and even have Hausdorff dimension

greater than or equal to 1.

Assume f: M + M has a topologically mixing non-trivial

hyperbolic attractor. Then,

(a)

there is a.set A < B(A) such that the Lebesque measure of

B(A) - A is zero, and for every x ¢ A and every continuous
n-1 “ .
function ¢: M + R, Llim 1 z ¢(ka) = ¢(x) exists and
T k=0
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(b)

(¢)

(d)

(e)

Parts (a), (b), (c) of theorem 1 are due to R.uelle1 .

Remarks:

1.

is independent of x in A

the operator ¢ -——> u(¢) = ¢(x) for x ¢ A determines
an invariant measure called the Bowen-Ruelle-Sinai measure

1 .
(or natural measure )) for &.

i
n  is exponentially mixing: given ¢ real-valued functions

¢ and ¥, ¢{fnx) w{x) du - JQdu . deuf < ce M@

.

for n 2 U and some constant C > 0.

s e 1) 1
u satisfies a central limit theorem : for typical C
there is a constant ¢ = o(y) > 0 so that

a1 , !
p{x e v: —é: ) b5 - n deu) <r}
n k=0

r

—— 1 j exp(—xz/Zoz) dx as n » =,
o 3/2—11_ e

12)

u 1is "stable" under random perturbations 7.
0)

There are instances of chaotic f with no non-trivial
hyperbolic attractors. However, the properties in (a)
through (e) of theorem 1 may still hold in much generality.
Even in the absence of rigorous proofs, theorem 1 sﬁggests
numerical tests which can be applied. For instance, one
could compute time aver;ges of vatioué fuctions at vgrious

points to see if limiting time averages exist. Given a
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function ¢: M + IR, and an integer n > 0, one could compute

i-1 i-1
amw = T we™0 v o) - G v’
» k=0 ‘ k=0

for typical x.and 1 much larger than n. Suppose this
were nearly independent of x and large i and decreased

exponentially with n. Then, one would have evidence of the
§

existence of a measure satisfying (a) and (c¢). Similarly,
one could test for (d).

2. There are necessary and gufficient conditions for the existence
of measures (with non-zero Lyapunov exponents) satisfying (a)
for points x in sets of positive Lebesque measure. Precise’

statements are found in Nevhouse7) and the proofs will appear

in the future.
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