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Introduction

Great interest in the vibration of systems arises because nearly all techno-
logical devices are subjected to vibration of one form or another, and
their response may or may not be desirable. For example, the undesirable
effects of vibration include noise, the effects on the human body, decreased
fatigue strength of machines and equipment, and decreased precision of
measuring instruments and machine tools. Sometimes, however, vibration
is desirable, as in vibratory conveyors, the lowering of dry friction coeffi-
cients, the delamination and consolidation of materials and the use of
radio waves.

It is difficult to find a branch of the natural sciences in which vibration
processes do not play a large and crucial role. The dynamic response of
physical systems depends on the forcing loads. In many cases, especially
where a non-linear model of the vibrating system is adopted, these loads
are assumed to be non-random, or deterministic. This cannot always be
justified; many dynamic physical systems are such that not only their
excitation but also their parameters and their initial and boundary condi-
tions are random.

A typical example of vibration caused by random excitation is that
experienced by a vehicle moving along an uneven road; the unevenness
of the road surface is clearly random. Another example is the action of
the wind on engineering structures such as masts, overhead power lines,
buildings, and bridges. The action of waves on a ship, of an aeroplane in
a turbulent atmosphere and of a gyroscope on a moving object should
all be considered to be random or probabilistic problems. Further examples
of random motion are the vibrations caused by earthquakes, the vibration
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in machines such as excavators and scrapers and the excitation which
occurs in jet engines. These problems are described in detail in [10], [11],
[12], [31], [48], [66] and [97].

The stochastic analysis of vibrations has as its main aim the determi-
nation of several of the characteristics of the vibrating system, such as the
mean displacement, velocity or acceleration value, and the variance and
correlation function of the appropriate quantities. It is also important
to be able to accurately estimate the life and reliability of machines and
structures; this is usually linked to the structure material fatigue properties
[11]}.

The optimization and stability of mechanical systems subjected to
random excitation are considered in [27], [30), [46), [61), [72], [75), [86),
[94], [109) and [3), [8], [10), [26], [47}, [53], [54), [96], 108].

In the thecry of random vibrations, as with deterministic systems,
both linear and non-linear vibrations and discrete and non-discrete systems
have to be considered. It should be noted that for these systems the theory
of Brownian motion was generalized and presented for the first time by
Einstein in 1905 [57].

For linear mechanical systems, methods of analysis have been worked
out sufficiently well both for discrete systems [29), [80), [87], [91), [99]
and [105] and for systems with distributed parameters [9], [12], [13],
[16), [36), [66] and [69). The analysis of systems with constant coefficients
has been worked out in much more detail, and several publications are
available on the analysis of systems with random coefficients {4}, {6], [10],
[20], [26] and [108].

For non-linear systems some solutions exist for mechanical systems
with particular types of non-linearity and random loads. These are generally
systems with one or two degrees of freedom which are subjected to steady-
state excitation. Non-linear systems witn distributed parameters can be
reduced to systems with a finite number of degrees of freedom by applying
methods from the theory of deterministic vibrations. As far as the non-linear
system with more than one but less than an infinite number of degrees of
freedom is concerned, the desired results may only be obtained in the
case of very particular types of non-linearity. Two basic methods of solv-
ing non-linear stochastic vibration problems are known; these are a) the
method based on the kinetic Fokker-Planck-Kolmogorov diffusion
equation, and b) correlational methods.

The kinetic Fokker—Planck-Kolmogorov equation plays a very
important role in probabilistic methods. The equation may be utilized to
obtain precise solutions, usually in those cases where the non-linearity is
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related to the elastic forces. The application of kinematic equations to
the analysis of vibrating systems may be found in many publications such
as [4], [5], [6], [10], [13], [45], [50], [61), [68], [70], [79] and [80).

Despite the fact that they are more universally used, correlational
methods require that the statistical linearization of the system be carried
out initially; they are thus approximate methods. As such they utilize
direct statistical linearization, Booton-Kazakov’s first and second methods,
harmonic and statistical linearization in the case in compound deterministic
and stochastic excitation, Zajdenberg’s linearization and the method of
the small parameter. When deterministic and probabilistic methods are
simultaneously applied, they complement each other well and form an
excellent means for both the analysis and synthesis of non-linear systems.
The fact that many investigators have applied a combination of Van der
Pol’s method, the method of the small parameter, or Bogolubov-Krylov's
method with probabilistic methods testifies to this [6], [25], [26], [50], [51],
[55), [78], [83] and [85). ,

It is the aim of the present work to present the theoretical bases of
the vibrations of non-linear systems subjected to random loads. Using
the methods presented, interesting characteristics of several vibrating sys-
tems have been calculated.
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CHAPTER 1

Random Processes

1.1 RANDOM PROCESS THEORY

In the theory of random processes certain classes of process are distinguished
according to the degree of correlation between the random variables.
The study of classes of processes is complicated, so that it constitutes a se-
parate field of investigation.

One important class of random processes is the Gaussian: process.
We say that a random or stochastic process X() is a Gaussian or a normal
process if, for every instant of time ¢,, 1,, ..., #, ( > 1) the random va-
riables x, = x(1,), x, = x(t,), ..., x, = x(,) have an n-dimensional pro-

bability density function

. 1
WXy, 8y X2, 125 .05 Xny 2,) =
x ‘1 P J 0,0; ... 0, ) ()%
xexp[——— }: O ""‘“""‘)("""""] .y
o=
where
_ ={x», i=12,..n 1.2
represents the mean value, and '
of ={(a-m)*», i=1,2,. 1.3)
is the variance. In addition, the standard dt*,v:atlon o is given by
‘ I gz ... 1a
a = 221 .. 92-'
Ont Oa2 - 1
where.
oy = SGmmIC=m) g, (1.4)

040,
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is the correlation coefficicnt of the two random variables x; and x;. 0, is
the algebraic co-factor of the element n,, of the determinant o.

It can be seen that the n-dimensional distribution of the Gaussian
process is defined by the mean value of the process

m, = m = m(t) = {X(t)) (L.5)

and the correlation function R.(t, t') of the two variables ¢ and ¢’ is given
by :
R(t, 1) = LX) —m(O] [X () —m(2)]>. (1.6)

Thus the distribution of the normal process can be completely deter-
mined if we know the mean value of the process (1.5) and its eigen-
correlation function (1.6), and for this it is sufficient to know the bivariant
distribution X(z).

Another class of stochastic processes which is of considerable practical
significance is represented by stationary processes, both in the narrow and
wider sense. A process is stationary in the narrow sense if the expressions
for probability density (1.1) do not change with an arbitrary translation
of the time axis. A process is stationary in the wider sense if its mean value
is constant and the correlation function is only dependent on the time
interval 7 = t'— (constant variance). If X(f) is stationary in the narrow
sense, then it is also stationary in the wider sense, but the reverse is not
necessarily true. On the other hand, if a Gaussian process is stationary
in the wide sense, then it is also stationary in the narrow sense.

The random variable X has a Poisson distribution if the probability
that it assumes a specific value k is expressed by the relationship

a"
P, = P[X = k] = e_aTcT’ (1.7
where

a>0, k=0,1,2,..
and

o
—"

; _
Y=t (1
k=0

The constant a = (X is a parameter of the distribution.

The random process X(r) with an analogous distribution to that of
" (1.7)is defined in a way similar to that of the random variable with 1 Poisson
distribution,

For the n points placed randomly in the interval (0, T, the probu-



